
Web-Service Framework For Environmental Models
Md Moinul Hossain^ Rui Wu* Jose T. Painumkal^ Mohamed Kettouch#

Cristina Luca# Sergiu M. Dascalu* Frederick C. Harris, Jr*

^*Department of Computer Science and Engineering
University of Nevada, Reno

Reno, NV, USA

#Computing and Technology
Anglia Ruskin University

Cambridge, UK

^{hossain, josepainumkal}@nevada.unr.edu #{mohamed.kettouch, cristina.luca}@anglia.ac.uk
*{rui, fred.harris, dascalus}@cse.unr.edu

Abstract—Environmental scientists always use different
models to simulate the real world with their own devices. Because
of the limited computing power, the simulation can consume very
long time. Also, it is hard to share their models with others and
they may need to rebuild the same model for similar problems.
To solve these problems, we propose a web-service centric
framework to expose models as services in this paper. The
framework allows model execution in the cloud environment,
submission of model data through the NetCDF standard data
format and storage and access to the model resources through
web services. The framework allows an easy way to publish
models as Linux container images through an image hub. A
prototype is introduced and implemented to prove the idea
works.

Keywords—model as service; web-based application;
environmental model; hydrological model; cloud-based application

I. INTRODUCTION

Modeling of physical processes is a core part of the
scientific inquiries. Scientists in all domains including earth
science build computer models to investigate physical
phenomena. Software is becoming a critical part of the modern
scientific research as a result. Quality, scalability, and
maintainability are significant concerns for scientific software.
Issues like data storage, retrieval, running and coupling models
are hard problems and require extra care from the perspective
of software engineering. Designing integrated systems that
provide means to handle all these issues can be a challenging
job.

Building software tools and frameworks for scientific
research can be interesting for many reasons. With the
advancement of computing power in recent decades, scientific
research is creating more and more data and models
independently built by scientific researchers. It is an exciting
field where software engineering can assist this emergence by
facilitating the creation of distributed software systems and
frameworks to assist scientists to have collaboration on these
data and models. Another significant aspect of this field is its
interdisciplinary nature. It poses a lot of challenges regarding
barriers to communication and team building among different
communities involved in the process.

The work presented in this paper is part of the NSF
EPSCoR-supported Watershed Analysis, Visualization, and
Exploration (WC-WAVE) project, initiated by the Nevada,

Idaho and New Mexico jurisdictions of EPSCoR. WC-WAVE
is a collaborative project with three principal components,
watershed science, cyberinfrastructure data and visualization
[1]. The goal of the project is to bring watershed scientists,
hydrologists, and cyberinfrastructure teams together to build a
platform called Virtual Watershed. The overall plan of the
project is to develop software tools for watershed scientists to
allow data storage and sharing, on demand modeling and
visualization through an integrated system.

Researchers in the WC-WAVE project use different
hydrologic models like ISNOBAL, PRMS, etc. to do modeling
of hydrologic processes of various watersheds including Dry
Creek and Reynolds Creek in Idaho, Jemez Creek in New
Mexico and Lehman Creek in Nevada. We introduced a
framework for representing these model data in the standard
format called Network Common Data Format (NetCDF) and
expose the models through web services. Because of the
flexible design (blueprint and templates), the framework can be
applied for the general use. To clarify these ideas, ISNOBAL
and PRMS are used in this paper to demonstrate the proposed
framework. In the rest of the paper, the prototype system is
named Virtual Watershed System (VWS).

ISNOBAL is a model initially developed by Marks et al. to
simulate the development and melting of the seasonal snow
cover in several mountain basins in California, Idaho, and
Utah. It is a DEM (Digital Elevation Model) grid-based model
that uses the energy balance to calculate snowmelt, runoff,
from snow properties, terrain and region characteristics,
precipitation, and climate [2].

The Precipitation-Runoff Modeling System (PRMS) is
another widely used model for general watershed hydrology. It
is a deterministic, distributed-parameter, physical process
based modeling system that evaluates the response of various
combinations of climate and land use on a watershed [3]. The
model was first developed in 1983 as a single FORTRAN
program composed of algorithms describing the physical
processes as subroutines. The current version of the model is
version 4 which has become more mature over the years of
development. It has been used to model different hydrology
application since its release including water and natural
resource management, measurement of the interaction of
groundwater and surface water, the interaction of climate and
atmosphere with surface water and much more [3].

This paper, in its remaining parts, is arranged as follows:
Section II introduces related work that has been done; Section
III proposed a design to build the system; Section IV describes
the prototype system and how to build software using RESTful
APIs; and Section V contains the paper’s conclusions and
outlines planned future work.

II. BACKGROUND

There has been numerous research on creating software
frameworks and environments to facilitate scientific research
by different interdisciplinary research groups. Several
successful collaborative research work on software frameworks
and environments in the fields related to earth science are
discussed in brief in this section.

Community Surface Dynamics Modeling System
(CSDMS) was a project started in 1999 to facilitate earth
surface modelers by creating a community driven software
platform. CSDMS applies a component-based software
engineering approach in the integration of plug-and-play
components, as the development of complex scientific
modeling system requires the coupling of multiple
independently developed models [5]. CSDM allows users to
write their components in any of the popular languages. Also
they can use components created by others in the community
for their simulations. CSDMS treats components as pre-
compiled units which can be replaced, added to, or deleted
from an application at runtime via dynamic linking. The key
design criteria that drove the design of CSDMS includes the
support for multiple operating systems, language
interoperability across both procedural and object-oriented
programming languages, platform independent graphical user
interfaces, use of established software standards,
interoperability with other coupling frameworks and use of
HPC tools to integrate parallel tools and models into the
ecosystem.

The Consortium of Universities for the Advancement of
Hydrologic Science Inc. (CUAHSI), one of the leading
research organizations representing universities and
international water science-related organizations, has several
software projects such as HydroShare to provide infrastructure
for water science research. HydroShare is an online,
collaborative software system for sharing hydrologic data and
models. The goal of HydroShare is to help scientists to
discover and access data, and models, retrieve them to their
desktop or perform analyses in a distributed computing
environment that may include grid, cloud or high-performance
computing model instances [6]. Scientists can also publish
outcomes of their research whether its data or model into
HydroShare, using the system as a collaboration platform for
sharing data, models, and analyses with other modelers. The
architecture of HydroShare separates the web application
interface layer from the service layer, exposing the
functionality through an application programming interface
(API) to enable direct client access and interoperability with
other systems [6].

Li et al. [7] proposed a cloud-based solution called Model
as a Service (MaaS) to support Geoscience Modeling. The
authors have provided the solution as a proof of concept to

allow remote execution of complex cpu and memory
consuming models by exposing them as a service on top of a
cloud provider like Amazon AWS. The central idea of MaaS is
to allow users to upload input data, run a model and access and
manipulate the output data through a web interface. The MaaS
backend runs on top of a cloud provider like Amazon EC2 and
takes care of provisioning computing resources on the provider
and running the model. The framework allows model
registration through a virtual machine image repository,
ensemble of model runs through on demand virtual machine
provisioning and input/output data persistence through a
common data backend.

The Demeter Framework by Fritzinger et al. [8] is another
attempt to bring software framework for assisting scientists in
the area of climate change research. This work presents an
overview of a software framework named the Demeter Frame-
work that proposes a new solution to the model coupling
problem by taking a component-based approach that allows
almost any standard or type of component to be integrated into
the system.

The Geographic Storage, Transformation and Retrieval
Engine (GSToRE) is a project initiated by the Earth Data
Analysis Center at the University of New Mexico which
provides a data framework for data discovery, delivery, and
documentation for scientific research specializing in earth
science. It has been developed as an extensible, scalable data
management, discovery, and delivery platform that supports a
combination of open and community standards. It is built upon
the principle of a services oriented architecture that provides a
layer of abstraction between data and metadata management
technologies [9].

The following paragraphs will briefly introduce the high-
level idea of different software engineering techniques used in
the development of the proposed system.

Service Oriented Architecture (SOA) is an architecture for
software systems which has gained significant focus in the IT
industry in recent years [10]. Service Oriented Architecture
constitutes a model where business logic for software is
decomposed into distinct units or services. Each unit is self-
contained, and they collectively represent the aggregated
business logic [10].

With the widespread popularity and effective use
of RESTful web services, a new kind of software delivery
architecture has emerged which is termed as Software as a
Service (SaaS). SaaS is essentially a software delivery method
where the service is delivered to a customer through the
internet instead of the need for local installation. SaaS is
currently regarded as an important IT trend as according to
industry analysts, considering the increasing sales and
continuing growth in the industry [11].

Micro-services is a software architecture in which a
complex application is decomposed into small components or
services that communicate with each other through well-
defined language-agnostic APIs [12]. The Micro-services is a
relatively new buzzword in the world of software architecture.
The architecture emerged as a solution to the numerous
complexities attached with traditional monolithic architecture.

In micro service architecture, the capabilities of an application
are decomposed into self-contained services. The usage of
micro-service architecture provides the liberty to use different
technologies that best suit the needs, enhances the scalability of
the application and facilitates low-risk deployments without
interrupting the rest of the services.

III. THE PROPOSED METHOD

The detailed design of the system is introduced in this
section. The design is presented through different standard
software design tools such as system level diagram and
workflow diagram.

A. System Level Design
The Virtual Watershed system comprises of several

different submodules where each of the modules provides
different functionalities of the entire framework. Figure 1
provides the high-level system diagram of the system.

VW-PY: The VW-PY sub-system provides a module to define
Python adaptors over the different models that are available
through the Virtual Watershed platform. An adaptor is
essentially a Python wrapper over a model to allow running the
model programmatically. It provides an interface to wrap a
model with a light python wrapper that takes care of data
format conversion, model execution and event triggering on the
progress of the model. The event driven system will allow a
model-wrapper developer to easily signal on progress as the
model execution happens.

Figure 1. The system level diagram of the system

VW-MODEL: The VW-MODEL submodule is the web
service front end to the modeling system. It exposes a REST
API endpoint to the user/client through which a user can
submit, query and download a model run and its resources.

VW-WORKER: The VW-WORKER module is a
messaging queue driven worker service that encapsulates a
model adaptor in a messaging queue worker. It is loosely
coupled with the VW-MODEL component through a common
redis data-backend.

VW-STORAGE: The VW-STORAGE component works
as the storage backend for the VW-MODEL module. The VW-

STORAGE is a generic wrapper for the object storage which
can be configured for different storage provider, either in the
cloud or locally.

VW-AUTH: The VW-AUTH module works as the
common security gateway for the system. It provides
authentication and authorization level access that can be used
by other services to authenticate/authorize a user/client against
a resource.

VW-SESSION: The VW-SESSION is a common session
backend that can be used by different components inside
Virtual Watershed that requires user session management. The
session backend is managed with a key-value Redis data store
that is shared across the services under Virtual Watershed.

VW-WEB: The VW-WEB is the common web frontend
module that is exposed to the end users. Users can log into the
system through the vw-auth module that sets a shared session
across the system and access resources, run models, track
progress and upload/download resources of model runs.

B. Detailed Design
The entire Virtual Watershed system is built as an

aggregation of different web services and web applications that
interact with each other. A common authentication gateway is
necessary to make the communications secure and centralized.
The VW-AUTH authentication module is a micro service
developed for the purpose. It provides a one-stop registration,
authentication, and authorization point for the users of the
system.

The component itself is developed as a web service that
exposes RESTful endpoints for the users to be able to gain
access to different service endpoints. It exposes API endpoints
for registration and authentication. The service also implements
a JSON Web Token (JWT) based authorization scheme for
allowing secure access to the REST endpoints of different
components. JWT is an RFC standard for exchanging
information securely between a client and a server. Figure 2
depicts the workflow for a user to be able to gain access to a
secure REST endpoint following token based authentication.

Figure 2. The workflow for accessing secure REST
endpoint with JWT token

The model web service component is a RESTful API that is
exposed to a user. Upon authentication, a user can create a

request for a model run, upload necessary input files needed for
the model to run and instruct the server to execute the model.
The API backend stores the model run data in a small database
and uses a storage backend to store the files uploaded by the
users.

Each available model in the system provides a schema to
describe the necessary input files and their formats, execution
policy of the model and a mapping between the parameters
presented to the user and the parameters available in the model
adaptor. The user or client can essentially extract the mapping
and know which resources are needed to be uploaded to run the
model. The basic steps from the client side perspective to run a
model are: get the model schema stored in the server; create a
model run in the server side; upload the model inputs; start the
model run; track the model run progress until it is finished;
download the model outputs. There are several advantages of
using this workflow and the web-client architecture: 1) Users
do not need to have the internals of the model. How the model
is setup, what are the dependencies essentially get hidden from
the user. 2) Users don't need to worry about installing the
dependencies of a model. 3) Users can initiate an ensemble of
model runs that can run in parallel on the server and get the
results back altogether. 4) Users can persist the data in the
server and access it from anywhere through the REST API.

The first step in creating the architecture for exposing
models as services is to be able to run a model
programmatically. Besides, a model can have dependencies it
needs to meet before it can be run. We achieve this by allowing
model adaptor developer to create a thin Python wrapper
around a model and expose all the dependencies through a
Linux container image. Another important issue to tackle here
is the data format heterogeneity of the model inputs and
outputs. Different models have inputs and outputs in different
formats. To achieve automated modification of the model
inputs, we introduced an option to write NetCDF data adapters
for each of the models. NetCDF is a data exchange format that
allows easy storage, extraction, and modification of gridded
scientific data. So in a nutshell, a model adaptor is essentially a
Python program that takes care of data format conversion,
running the actual model and emitting the progress. A wrapper
is a simple python interface. Model adaptor developer can
implement the interface to expose the model programmatically.
Adaptor developer needs to provide a set of converters to allow
conversion and deconversion of the native resources of the
model to NetCDF and its original format. The developer also
needs to implement an execution method where the resource
conversion and execution of the model happens. The wrapper
has access to an event emitter that can be used by the developer
to emit events as the model progress on execution; the events
can be caught by an event listener, which is responsible for
persisting the progress to be sent back to the user through a
REST endpoint.

Through a model adaptor, we can encapsulate a model to be
executed programmatically. To set the bridge between the web
service frontend and the actual model execution we need a
process. The model worker module comes into play to facilitate
that. We used a producer-consumer style messaging queue to
accomplish the process. A messaging queue or task queue is a
lightweight middleware that creates a bridge between user

frontend and worker backend. When a user submits a model
run task through the web service frontend, it is placed into the
queue by the web service through a unique id. The
consumer/worker process listens to the queue through a
common protocol for new jobs.

The worker process is a Python process that runs on a
server where it has access to the model execution code, and the
dependencies of the model are installed. The worker resides in
an isolated server instance that has the dependencies and
libraries of the model installed. It is ensured through the
deployment workflow using Linux containerization.

C. Deployment Workflow
We have devised a Linux container based deployment

workflow for the different components of the system. We used
a technology called Docker to develop the workflow [4].
Docker containers are better than normal virtual machines
because they use fewer resources. This workflow allows doing
iterative deployment and scaling of the components, and a
strategy to register new models in the system.

Each of the components of the virtual watershed platform is
dockerized. We have a central Docker image repository set up
that contains images for the different components. A Docker
image is essentially a template that encapsulates the os,
dependencies of an application and the application itself. An
image can be used to provision containers that run the
application on top of Docker engine. Each of the repositories in
virtual watershed contains a Dockerfile that describes how the
image for the component should be built and how the
application is served when deployed as a container. A typical
Dockerfile usually contains instructions to install libraries and
dependencies for the component to run when provisioned. The
repositories are set up with automated build in the image hub
through webhooks.

The dockerized workflow opens up an easy way to register
model in the system. Different models have different
requirements for setting up the environment. Our system
allows a developer to register a model through the creation of
Docker image for the model. It allows a developer to specify
the os, libraries and other dependencies for the model. The
basic steps for registering a model in the system through the
creation of Docker image are: create model repository;
implement the model wrapper; provide dependencies through
dockerfile; test and publish code; create a Docker image in the
image repository.

IV. SYSTEM PROTOTYPE AND TESTING
The system was built using different tools based on the

need for the components. The project used some our previous
codes and similar structures introduced in [14] and [15]. The
web service frontends are built using a Python micro-
framework called Flask with the usage of various extensions
[13]. Some of the used libraries were Flask-Restless for
implementing the REST API endpoints, SqlAlchemy for
mapping the data models with a database back-end [16],
PostgreSQL as the database [17], Flask-Security, and Flask-
JWT for authentication and authorization. For the web front
ends HTML5, CSS, Bootstrap, Javascript and ReactsJs library

were used. Celery, a python based task queue that supports
multiple broker backend was used to implement the task queue
for model workers [18]. Redis was used as the broker and
result backend for Celery. A REST spec library called Swagger
was used to create the spec for the REST APIs. This spec
allows the creation of REST clients in numerous languages. To
structure the code, MVC design pattern was used. GitHub was
used as the central repository for code and issue management
and the codes are publically made available through Virtual
Watershed’s GitHub repository [19].

The two main components of the prototype system are 1)
Authentication module and 2) Modeling module.

The authentication module takes care of all the activities
related to securing the Virtual Watershed system. It handles the
registration of new users, login of existing users, verification of
the user, resetting the user password, and generating JWT
authentication tokens to access the REST APIs. The VW
system also supports the registration and authentication of
users through a REST API. This feature helps VW system to
have multiple applications using a single authentication
endpoint.

The modeling module contains an intuitive user interface to
allow users to create, upload, run and delete models using the
REST API service. The UI includes a progress bar to inform
users about the percentage of the model run finished. The
module also includes a dashboard where users can view the
models being run, the finished model runs, and also download
the model run files. Figure 3 shows a screenshot of the
dashboard where a user is trying to run ten PRMS models in
parallel by uploading the three input resources needed for
PRMS model.

Figure 3. The dashboard for user’s model runs

The web interface works as a proof of concept client for the
modeling REST API. The real power of the modeling interface
comes when it is used programmatically to run an ensemble of
models in parallel without having to worry about the need of
computing power. Applications can be built on top of the
modeling web service to provide an extended capability to
manipulate model input parameters and run the model.

Model calibration is a tedious process for the PRMS modelers
since it requires running the model again and again with varied

parameter values. Modelers often end up using a manual
process to edit and manipulate the input files and running the
model manually on a local machine. It requires an enormous
amount of time to do the calibration. The virtual watershed
system includes a web-based scenario design tool to
manipulate different input variables of the PRMS model, run it
through the modeling web service, and, visualize and compare
the output data of different model runs. Figure 4 shows the
interface that allows manipulation of input data visually
compared to a manual edition of the input by opening them in
an editor. It allows the users to do modeling without having the
deeper knowledge of how internally model data is represented,
and it can be useful for public teaching for modeling. The
system can also visualize the outputs after a model has
completed run through the modeling web service.

Figure 4. Scenario creation interface for PRMS model that
uses Modeling REST API to execute model

Figure 5. Example of tuning a hundred model through an
IPython notebook with different parameters

A set of IPython notebooks were created to demonstrate the
programmatic way of running an ensemble of models in
parallel by using the modeling API [20]. The particular

example is shown in the screenshot in Figure 5, shows an
important step of modeling with PRMS model. By using the
modeling API, the user can achieve this capability
programmatically writing a few lines of code. It also enables
the user to leverage the computing power of the server to run
the model as many time a user wants without having to worry
about system configuration.

V. CONCLUSION AND FUTURE WORK

In this paper, a web-service platform is proposed for
executing hydrologic models. We devised a strategy for
exposing a model through thin Python wrapper that allows
representing the model resources through a common data
format (e.g., NetCDF) and execution of the model in the server
by submitting the resources in NetCDF format. A common
authentication/authorization framework as part of the
development process is also implemented. This framework
allows a common security endpoint for the users to gain access
to different applications under a virtual watershed platform.
Two hydrologic model called iSNOBAL and PRMS are
implemented in the prototype system as model wrappers to
prove the concept. We also devised a replicable deployment
strategy for the entire system using a dockerized workflow
which allows a process for progressive development and
deployment of the components.

The project can be further extended by enabling more
features. The system currently has the option to integrate with
GSToRE data backend. Enabling a generic data backend with
an option to integrate with other existing data providers like
DataONE, Hydroshare, etc. will enable better access to data for
modeling automation. Allowing provisioning of on-demand
model containers in cloud providers to make cost-effective
deployment can be an important aspect of pursuing. Allowing
model tuning directly through web service will also be
interesting to consider for further development. Developing a
pricing model for service usage would be another interesting
aspect to look at. User-centric computational resource
management can also be a potential candidate for future
development. Allowing users to request for resources and
managing them on demand can be a challenging task. Another
challenging and useful feature would be allowing model
coupling as a service. Models are hard to the couple. Providing
coupling through service can be a good albeit very challenging
extension of the current work.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under grant numbers IIA-1329469 and
IIA-1301726.

Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] Nmepscor.org. (2017). The Western Consortium for Water Analysis,
Visualization and Exploration | New Mexico EPSCoR. [online]
Available at: https://www.nmepscor.org/science/western-consortium-
water-analysis-visualization-and-exploration [Accessed 4 Feb. 2017].

[2] Marks, D., Domingo, J., Susong, D., Link, T. and Garen, D., 1999. A
spatially distributed energy balance snowmelt model for application in
mountain basins. Hydrological Processes, 13 -1959.

[3] Steven L Markstrom, R Steven Regan, Lauren E Hay, Roland J Viger,
Richard MT Webb, Robert A Payn, and Jacob H LaFontaine. PRMS-IV,
the precipitation-runo modeling system, version 4. Tech. rep. US
Geological Survey, 2015.

[4] Merkel, D., 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal, 2014(239), p.2.

[5] Peckham, S., Hutton, E. and Norris, B. (2013). A component-based
approach to integrated modeling in the geosciences: The design of
CSDMS. Computers & Geosciences, 53, pp.3-12.

[6] Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Ames, D., Goodall, J.L.,
Band, L.E., Merwade, V., Couch, A., Arrigo, J., Hooper, R.P. and
Valentine, D.W., 2013, December. HydroShare: an online, collaborative
environment for the sharing of hydrologic data and models. In AGU Fall
Meeting Abstracts (Vol. 1, p. 1510).

[7] Li, Z., Yang, C., Huang, Q., Liu, K., Sun, M. and Xia, J. (2017).
Building Model as a Service to support geosciences. Computers,
Environment and Urban Systems, 61, pp.141-152.

[8] Fritzinger, E., Dascalua, S.M., Ames, D.P., Benedict, K., Gibbs, I.,
McMahon, M.J. and Harris, F.C., 2012. The Demeter framework for
model and data interoperability (Doctoral dissertation, International
Environmental Modelling and Software Society (iEMSs)).

[9] Wheeler, J., 2017. Extending Data Curation Service Models for
Academic Library and Institutional Repositories. Curating Research
Data, p.171.

[10] Erl, T., 2005. Service-oriented architecture (SOA): concepts,
technology, and design.

[11] Buxmann, P., Hess, T. and Lehmann, S., 2008. Software as a Service.
Wirtschaftsinformatik, 50(6), pp.500-503.

[12] Lewis, J. and Fowler, M., 2014. Microservices: a definition of this new
architectural term. Mars.

[13] Grinberg, M., 2014. Flask web development: developing web
applications with python. " O'Reilly Media, Inc.".

[14] Hossain, M., Dascalu, S. and Harris Jr, F.C., A Software Environment
for Watershed Modelling. In Proceedings of the 24th International
Conference on Software Engineering and Data Engineering (SEDE
2015), October 12-14, San Diego, CA.

[15] Wu, R., 2015. Environment for Large Data Processing and
Visualization Using MongoDB (Doctoral dissertation, University of
Nevada, Reno).

[16] Copeland, R., 2008. Essential sqlalchemy. " O'Reilly Media, Inc.".
[17] Momjian, B., 2001. PostgreSQL: introduction and concepts (Vol. 192).

New York: Addison-Wesley.
[18] Docs.celeryproject.org. (2017). Celery - Distributed Task Queue —

Celery 4.0.2 documentation. [online] Available at:
http://docs.celeryproject.org/en/latest/. [Accessed 3 Feb. 2017].

[19] GitHub. (2017). VirtualWatershed. [online] Available at:
https://github.com/VirtualWatershed/ [Accessed 3 Feb. 2017].

[20] Pérez, F. and Granger, B.E., 2007. IPython: a system for interactive
scientific computing. Computing in Science & Engineering, 9(3).

