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A B S T R A C T

We investigated the accuracy of numerical weather prediction (NWP)-based global horizontal irradiance (GHI)
and clear-sky index forecasting over southern Nevada. Accurate forecasts of solar irradiance are required for
electric utilities to economically integrate substantial amounts of solar power into their power generation
portfolios. Solar irradiance forecasting can enhance the value of renewable energy by anticipating fluctuations in
these variable resources. Summertime cloud variability depends largely on the combination of tropical and
extratropical synoptic-scale forcing, most of which is observable, predictable, and highly related to the North
American Monsoon moisture surge events. We used high-resolution realtime NWP output based on the weather
and research forecasting (WRF) model to study the ability of the model to deliver day-ahead GHI and clear-sky
index forecasts for a the National Renewable Energy Laboratory (NREL)-University of Nevada site, located in Las
Vegas, Nevada. High-resolution forecast products were obtained from the Desert Research Institute (DRI) ar-
chived real-time numerical weather forecasting products. Results showed the importance of developing a site-
specific seasonal and weather-dependent model output statistics (MOS) approach to improving forecast accu-
racy, which removes the bias and reduces the overall relative root-mean – square error (rRMSE) of GHI by as
much as 6%, when compared to the uncorrected model output; improving forecast accuracy is obtained by
adding information that relates regional-scale circulation patterns driving cloudiness, hence irradiance varia-
bility to the target area. We show the seasonal dependence of the NWP forecast accuracy and demonstrate that
intelligent weather functions provide a pathway to improve accuracy of solar forecasts further.

1. Introduction

Current solar forecasting technologies use a mixture of tools to
improve the forecast, ranging from statistical data approaches to phy-
sically-based deterministic and probabilistic models. Optimizing the
implementation of these tools to increase forecast accuracy can reduce
costs and increase the reliability of integrating solar power into the
electricity grid (Lorenz et al., 2009).

Numerical weather prediction (NWP) models are physically based
and generally the most accurate tool for solar global horizontal irra-
diance (GHI) forecasting for forecast windows lasting hours to several
days (Perez et al., 2013; Mathiesen and Kleissl, 2011; Jimenez et al.,
2016). Improved forecasting requires high quality and reliable real-
time data from widespread networks of upper-air and ground-based
instruments. These data define the model’s initial conditions using data
assimilation tools. Today, state-of-the-art, high-resolution NWP models
are capable of resolving clouds (stratiform and convective), fog-filling
valleys, orographic precipitation, and even local processes related to
the urban heat island effect. NWP systems such as NOAA’s High-

Resolution Rapid Refresh (NOAA-HRRR; Benjamin et al., 2004), the
Advanced Research-Weather and Research Forecasting model (WRF;
Skamarock et al., 2008), among other models, are becoming essensial
tools to provide critical information for various weather-related sectors,
including the energy industry. Nevertheless, stubborn sources of un-
certainty – because of imperfections in parameterization of the model’s
physics, chaotic behavior of the weather, complex topography, im-
perfect initial conditions, among other challenges – persist in NWP
systems, leading to model imperfections. Quantifying the model’s er-
rors, systematic and random, is then a necessary task to assess whether
its output is suitable to guide resource-management decisions.

Forecast post-processing approaches called model output statistics
(MOS) can improve NWP model forecasts (Perez et al., 2013) and have
proved to be more useful in correcting systematic biases (Perez et al.,
2013; Zhang et al., 2013a,b; Sengupta et al., 2015). MOS approaches
implement statistical regressions ranging from linear regression
methods to sophisticated machine-learning tools designed to perform
deeper error structure and pattern recognition for more intelligent NWP
output correction (Sharma et al., 2011; Lauret et al., 2014; Alessandrini
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et al., 2015). In general, all MOS approaches seek to optimize NWP
model output by relating locally or regionally observed parameters to
site-specific conditions (Badosa et al., 2015). Bias correction ap-
proaches are often implemented without careful consideration of the
source of the bias (a challenging task), however, and without con-
sidering regional or local physical processes responsible for cloudiness
variations in the region. Differentiating between error sources can be
important to selectively correct forecasts and create more accurate MOS
tools (Lauret et al., 2014).

Mejia et al. (2016) showed that cloudiness over the U.S. Southwest –
including New Mexico, Arizona, and southern Nevada – is related to
North American Monsoon (NAM; Adams and Comrie, 1997) synoptic-
scale wet spells called “moisture surges.” Moisture surges are ob-
servable and predictable weather patterns in the NAM region and are
modulated by different tropical and extratropical synoptic-scale fea-
tures – including inverted troughs, tropical easterly waves, eastern
Pacific tropical storms, tropical cyclones, and extratropical waves
(Higgins and Shi, 2001; Seastrand et al., 2014; Mejia et al., 2016).
These features predominantly occur during July-September and then
tend to increase monsoonal moisture transport through the Gulf of
California – reaching northwestern Mexico and the southwestern U.S.
and increasing moisure instability – leading to increased storminess and
organized convection in the region. We argue that this cloudiness drives
variability of solar resources in the southwestern US during the NAM.

Kim and Clarkson (2016) developed a study to improve GHI and
direct normal irradiance using an NWP model based on the WRF (with
aerosol interaction) over Arizona and showed that the model performed
poorly during the 2011 NAM season, likely related to the frequent but
variable nature of clouds during the 2011 NAM season. Here we argue
that forecast improvement for hours to day-ahead time windows can be
improved by conditioning the forecast products by developing a pro-
cess-based MOS that considers NAM moisture-surge episodes.

We focused on performing a detailed forecast accuracy assessment
of day-ahead GHI and clear-sky index (Kt∗) using real-time forecast
output from the NWP model based on the WRF. Specifically, we present
forecast comparisons against GHI observations from a site in Las Vegas,
Nevada. The accuracy assessment implements multiple forecast error
metrics that enable us to quantify the benefit and sensitivity of im-
plementing different MOS approaches and training techniques.
Specifically, the training technique determines parameter and site (or
region) specific bias correction quantities associated with composite
events characterized by canonical relative humidity state and regional-
scale flow regimes referred to as weather functions in this study.

2. Data and methodology

2.1. Evaluation observations

We used GHI surface observations from a National Renewable
Energy Laboratory (NREL)-University of Nevada, Las Vegas site (NREL-
UNLV; Andreas and Stoffel, 2006; 36.06° N, 115.08° W, 615m ASL).
The station provides observations at 1-min. time increments, ag-
gregated and synchronized using 1-h time increments to match the
model output. Of note is that observations were not categorized by
changes in GHI because of haze, smoke, or dust – which can be an
important source of GHI variations (∼10%; Zack, 2010) in the Las
Vegas region (Chow et al., 1999) and can impact model evaluation
procedures.

2.2. Clear sky index

A common parameter derived from GHI is the clear sky index (Kt∗).
The Kt∗ is defined as the ratio of irradiance to irradiance during clear
sky conditions at any given time (GHIclear). Kt∗ normalizes GHI between
0 and 1 (for clear sky conditions), reducing the potential of introducing
non-stationarities into the statistical approaches from the irradiance

diurnal cycle and seasonality (Voyant et al., 2015). In this study and for
simplicity, we estimated the GHIclear using the Ineichen and Perez clear
sky model with climatology parameters for the state of the atmosphere
(Ineichen and Perez, 2002; Reno et al., 2012) and using Holmgren and
Groenendyk (2016) procedures.

2.3. High-resolution NWP model

We implemented archived weather forecast data from the Desert
Research Institute (DRI) operational weather forecast system starting
August 1, 2015 and continuing to December 31, 2016. DRI performs
real-time, fine-resolution NWP simulations based on the Weather and
Research Forecasting model (WRF; Skamarock and Klemp, 2008;
Skamarock et al., 2008). The model domains are 18 km over the wes-
tern U.S., 6 km-nested domains covering California and Nevada, and
two nested domains at 2 km independently covering the Reno-Tahoe
and Las Vegas urban and suburban areas (Fig. 1).

The WRF configuration follows physics and integration strategies
shown in Dorman et al. (2013), with some modifications and different
domain-grid configuration outlined below. We designed the selection of
model setup through basic and common knowledge of the prevailing
physical processes that dominate regional climate variations over the
western U.S. (Leung et al., 2003; Rasmussen et al., 2011; Liou et al.,
2013; Silverman et al., 2013; Zhang et al., 2013a,b; Dorman et al., 2013).
A summary of the WRF model main configuration and parameters is
presented in Table 1. It is well known, however, that the selection of
optimal parameters and physics configuration for WRF is a challenging
task depending on many factors, including the following: initial/
boundary conditions, regional climate and its variability, and simulation
grid size (Liang et al., 2012; Diagne et al., 2014; Fernández-González
et al., 2015). Controlling all these factors and all the parameters involved
in the WRF as a real-time forecasting tool is outside the scope of this
report, requiring time and resources not available for this study. The
WRF is driven by initial and lateral boundary conditions provided by
Global Forecast Systems (GFS; http://www.emc.ncep.noaa.gov/GFS/
doc.php), while integrating the dynamic equations and physics para-
meterizations at the interior grids at finer spatial and temporal scales.
GFS is produced and periodically updated by the National Centers for
Environmental Prediction (NCEP). The horizontal grid spacing for GFS
data is 0.25 arc degree with 32 vertical layers, including lateral boundary
conditions of surface, atmosphere, and soil variables every three hours.
The GFS data assimilation system was updated in May 2016 to include a
dual-resolution hybrid four-dimensional ensemble-variational assimila-
tion system intended to improve the model’s initialization and forecast
accuracy. At the time of this study, we were not aware of any studies and
showing evidence of any improvements in the GFS system. Note that
these GFS changes could have introduced some systematic differences
and trends in the forecast error structure of this study. Our relatively
short period of simulated records prevents us from examining and ac-
counting for such potential differences. In this study, we assumed that
such differences were small and to the best of our knowledge, there are
no published results indicating that this assumption precludes our
methodological approach and assessment.

Zempila et al. (2016) and Ruiz-Arias et al. (2013) found that the
Dudhia scheme performs adequately under clear-sky conditions. If
aerosols are considered, however, Ruiz-Arias et al. (2013) suggested
that the RRTMg (a different shortwave parameterization approach
implemented within the WRF) tends to perform better than the Dudhia
scheme. The NWP systems described above does not consider aerosol
interactions with clouds and radiative processes, which could be im-
portant drivers of solar irradiance variability (on the order of 10%) in
the southwestern U.S. (Kim and Clarkson, 2016).

Real-time forecast products were produced twice per day (00 and 12
UTC). For this study, the model GHI and other ancillary forecast
parameters were retrieved using the nearest grid point to the NREL-
UNLV site. Day-ahead hourly GHI forecasts were archived consistently
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since Aug. 2015. One note is that a day-ahead forecast for the 12 UTC
forecasts provides only a two-to-three hour spin-up before daylight,
which can have a negative impact in the model’s representation of the
physics of clouds, thereby affecting radiation processes. Of note is that
the night values were excluded. To add fairness and realism in the
timing of the cloudy episodes, AM and PM values were treated sepa-
rately regardless of the MOS scenarios and approaches.

2.4. MOS training scenarios and approaches

Our main foci were to perform an accuracy assessment of the
model’s performance and investigate the impact of different MOS ap-
proaches and training techniques (hereafter, “scenarios”) that in-
corporated observable and predictable local/regional processes that
correlated well with cloud variability in the Las Vegas area.

Traditional MOS approaches use fixed seasonal (stationary) bias cor-
rection predictor/predictant relationships (Glahn and Lowry, 1972; Jacks
et al. 1990; Roebber, 2010; Cui et al., 2012), which assume stationarity
and do not account for intraseasonal-to-interannual variations or early/
delay onset of seasonal transitions. The post-processing approaches
adopted here are designed for a specific site and use the simulated target
parameter and corresponding local observations at a desired site.

2.4.1. MOS scenarios
2.4.1.1. Seasonally adjusted MOS. A novel aspect of our MOS approach
is the use of a simple optimization of the bias correction of model
output using bootstrapping, which is accomplished by dividing the
historical forecast into two periods – a training and a validation period.
The former was used for estimating the parameters by minimizing the
bias and root-mean-square error (RMSE). We used seasonal training

Table 1
Model setting for WRF used at the Desert Research Institute.

Domain/Integration
settings

Domain 1
18 km grid size

Domain 2
6 km grid size

Domain 3
2 km grid size

Domain 4
2 km grid size

Horizontal and vertical
grid cells

140× 130×65 193×196×65 101×100×65 101×100×65

Slope radiation On On On On
Topographic shading On On On On
Downscaling One-way One-way One-way One-way
Output time increments Hourly 10min 10min 10min
Time step (maximum) 90 s 30 s 10 s 10 s

Physics parameterizations
Boundary layer MYJ-TKE (Janjic, 1994) MYJ-TKE (Janjic, 1994) MYJ-TKE (Janjic, 1994) MYJ-TKE (Janjic, 1994)
Cumulus K&F Explicit Explicit Explicit
Microphysics Thompson (Thompson et al., 2008) Thompson (Thompson et al., 2008) Thompson (Thompson et al., 2008) Thompson (Thompson et al., 2008)
Land surface model Noah Multi-Physics (Niu et al.,

2011)
Noah Multi-Physics- (Niu et al.,
2011)

Noah Multi-Physics- (Niu et al.,
2011)

Noah Multi-Physics- (Niu et al.,
2011)

Radiation (shortwave and
longwave)

Dudhia (Dudhia, 1989) and RRTM
(Mlawer et al., 1997)

Dudhia (Dudhia, 1989) and RRTM
(Mlawer et al., 1997)

Dudhia (Dudhia, 1989) and RRTM
(Mlawer et al., 1997)

Dudhia (Dudhia, 1989) and RRTM
(Mlawer et al., 1997)

Fig. 1. DRI-RCM model nested domains using D01=18 km, D02=6 km, and D03 and D04=2 km (grid sizes). Shaded contours correspond to the terrain elevation using each simulated
domain resolution. D04 is centered around Las Vegas.
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windows longer than 90 days to increase the likelihood of including
similar weather functions and retain the range of variability, making
the approach suitable for extreme events. Also, the longer the training
period, the larger the number of independent samples in the training
data. Systematic errors, however, may potentially vary from one
synoptic event to the next. Alternatively, a very long training period
(> 120 days) would cross seasonal transitions, increasing uncertainty
because of marked seasonal dependencies in the error structure
(Akarslan and Hocaoglu, 2016). Training periods from similar seasons
using multiyear data sets would be helpful but are typically inadequate
due to non-stationarities related to inter-annual climate variations.
Moreover, maintaining long historical forecast data sets (multiyear) is
expensive and often contains inadequate/inhomogeneous samples
because of: (i) changes to the global model used as the boundary
condition; (ii) global/regional/mesoscale models are constantly
undergoing upgrades; (iii) increases in model resolution that
accompany steady improvements in computing efficiency. If the
systematic errors in the simulated output are consistent, then
45–120 day training data sets may be adequate for correction of
systematic forecast errors, while controlling the stationarity
assumption of the regressions analysis or correction functions.

2.4.1.2. Relative humidity at the surface (Weather Function 1 or
WxF1). Moist processes and convective cloud parameterization and
microphysics are perhaps the most challenging processes in NWP
modeling systems. In arid climates, cold moist environments have
been related (more strongly in regions with complex topography) to
enhanced cloud cover conditions (Walcek, 1994; Stensrud, 2009). As an
attempt to aid the MOS model, bias correction was performed by
separating the training functions into the following two subsets: above
and below median surface relative humidity (RH). Current (before the
forecasting day) relatively dry conditions (RH below RH50th
percentile) relate well with clear-sky days, whereas during relatively
wet conditions (RH above 50th percentile) such a relationship is not as
clear. Overall, we found that this approach discriminates well during
clear-sky days, avoiding unnecessary corrections by the MOS (e.g.,
when all moist regimes are considered together). Similar MOS
approaches have been developed using step functions and multilinear
regression approaches (Verzijlbergh et al., 2015) and show
improvement in forecast accuracy.

2.4.1.3. Moisture surges (Weather Function 2 or WxF2). This weather
function consists of adopting a process-oriented MOS system that
includes a meaningful NAM regional-scale circulation pattern, which

in turn is related to an increase in cloud cover and rainfall (Seastrand
et al., 2014; Mejia et al., 2016). The accuracy assessment using the
WxF2 scenario focused only during July-Sept. Fig. 2 shows National
Solar Radiation Database (NSRDB; Wilcox, 2007) data for Las Vegas
during the 2004 NAM season. This highlights the tendency of “moisture
surges”, such as the July 12–15 surge event (Rogers and Johnson, 2007;
Mejia et al., 2010), to increase cloudiness. Note that moisture surges
have a multi-day effect on incoming surface radiation (Fig. 2) and
prompt a significant increase in the variability of late morning and
afternoon irradiance (Fig. 3). We argue that the summertime diurnal
variability exhibited in Fig. 3, which shows the strong predictability
potential of solar irradiance, can further aide MOS strategies by
compositing the outlined moisture surge, regional-scale circulation
pattern.

We created a binary surge index following the Bordoni and Stevens
(2006) approach, which captures the dominant synoptic variablity

Fig. 2. NREL/NSRDB 24-h moving average of modeled GHI (MM/DD) and Precipitable Water at McCarran site (Las Vegas) during NAM-2004 (Wilcox, 2007). Note that peaks in PW are
related to significant decreases in global radiation. Also of note is that all relatively high values in PW are related to well-documented 2004 surge events, July 12–15, Aug 2–4, and Sept
10–13 (Mejia et al., 2010; Johnson et al., 2007).

Fig. 3. Diurnal cycle distribution composites (extreme values, interquartile range, and
median) of NREL/NSRDB modeled GHI averaged during the 2000–2005 NAM moisture
surge/wet days (wet days; top panel) and non-moisture surge/dry days (following Mejia
et al. (2016) moisture surge definition).
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mode, typically related to the southerly-southesterly flow over the Gulf
of California. We used GFS output (before the forecasting day) at 0.5
arcdeg, 10m surface winds over the Gulf of California at 00 UTC. We
performed a principal component analysis using archived data from
July 2010 to the forecast day. The surge index enabled categorizing the
leading principal component values exceeding one standard deviation
as surge days; all other days were categorized as non-surge days. At the
end of the assessment period, the leading principal component ex-
plained 47.2% of the variance, on average. Fig. 4 shows composited
surge day differences (surge days minus all days) using the total column
water vapor fields for the July to September monsoon season during a
long-term period (2010–2016) and during the period (2015–2016)
contrasting some differences in the surge impacts over the study region.
Both composite periods, however, capture the relatively moist en-
vironments related to surge episodes.

2.4.2. MOS approaches
2.4.2.1. Quantil-quantil mapping (Q-Q). This MOS approach follows an
empirical Quantil-quantil mapping method (hereafter, MOS Q-Q
approach) adapted here for short-term NWP applications but
originally developed for bias correction of regional climate variability
and change products. The method is one of the most popular bias
correction approaches because it is non-parametric, computationally
efficient, and simple to implement (Mejia et al., 2012; Maraun, 2013;
Hatchett et al., 2016). It consists of transforming the simulated
cumulative distribution function (CDF) by adding the mean difference
between the observed and model output at the corresponding quantiles.
The MOS QQ assumes an equi-probability transformation between
observations and model output empirical CDF. A significant limitation
of this approach is that it does not perform well for extreme value and
skew probability distribution functions (PDFs; e.g., hourly precipitation
or wind gusts; Maraun, 2013).

2.4.2.2. Linear regression. A least square polynomial fit (of order 1 for
linear fit; Wilks, 2011) is updated every forecasting cycle using either of
the outlined training scenarios. The resultant polynomial coefficients
help determine bias relative to the best fit, and are then applied to the
future forecast and archived for retrospective simulated climatology
estimates. An important underlying assumption in this approach is use
of a Gaussian error distribution for assigning weights, which helps

avoid ill-conceived covariance matrices. In some cases, typically during
strong intra-seasonal (∼20 to 60 days) shifts, a quadratic fit has
performed better than a linear polynomial (not shown). For
simplicity, we have kept this MOS approach fixed with linear fit.
Additional optimization opportunities may be available requiring
additional research to adequately identify the flow regimes (weather
functions) that introduce non-linear error structures in the model.

In summary, we implemented and examined four bias-correction
scenarios using two MOS approaches (Q-Q and linear), including (i)
without seasonally adjusting MOS; (ii) similar to (i) but discriminating
with weather functions that include surface relative humidity (WxF1);
(iii) seasonally adjusting MOS; (iv) similar to (iii) but discriminating
with WxF1. During the monsoon season, only three scenarios were
examined: (i) only considering the monsoon period and without
weather functions; (ii) only monsoon and discriminating with WxF1;
and (iii) only monsoon and discriminating with WxF2.

2.5. Error metrics

We implemented standard and basic solar power accuracy mea-
surements to evaluate the model’s performance, allowing comparison
between a sufficiently large number of pairs (N) of the model forecast
(F) and the observed (O) hourly values (Zhang et al., 2013). We in-
cluded the mean bias error (MBE); mean absolute error (MAE); root-
mean-square error (RMSE); and the Pearson correlation coefficient (r),
defined as follows:
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Fig. 4. Moisture composites estimated as surge days minus all days of total column water vapor [mm] for climatology (left; 1978–2016) and during the simulation period (right;
2015–2016) (see text for details in the compositing strategy).
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The relative values of the MBE (rMBE), MAE (rMAE), and RMSE
(rRMSE), which are estimated by normalization to the mean measured
irradiance during a given period, also were considered to facilitate
benchmarking against other studies and sites (Beyer et al., 2009;
Mathiesen and Kleissl, 2011; Perez et al., 2013; Verzijlbergh et al.,
2015). rMAE and rRMSE helped to assess the gain in performance of
any specific approach and scenario and have been used in inter-com-
parison studies assessing forecast accuracy of different forecasting
systems; and enabled us to compare performance in contrasting cli-
mates. Because the evaluation periods in different studies tend to be
different, we used such benchmarking indices with caution. Alter-
natively, we compared the forecast against a simple reference model
approach known as Persistence, which consists of using hourly ob-
servations from the current day to forecast the following day. Note that
RMSE and rRMSE penalize large forecast errors, while MBE and MAE

treat errors uniformly. MAE- and MBE-related metrics are more asso-
ciated with potential imbalances because of solar power generation
systems (Zhang et al., 2013). An underlying assumption was that the
error distribution was unbiased and followed a normal distribution.

3. Results

Table 2 shows detailed forecast accuracy evaluations contrasting
error metrics, MOS approaches and scenarios, as well as model in-
itialization times for the period August 1, 2015 to December 31, 2016.
In general, the raw model output (WRF) and all the different im-
plemented MOS scenarios and approaches outperformed the Persistence
forecast, regardless of the error metric and season considered. The
value added by the NWP approaches relative to the Persistence ap-
proach, for day-ahead solar forecasts or even longer forecast windows
(2–5 days out), has been extensively discussed in the literature (Lauret
et al., 2014; Perez et al., 2013). The Persistence forecast approach
constitutes a simplistic model useful for benchmarking, but the NWP
accuracy gain can be smaller in regions or seasons in which frequent
and persistent multiday cloud structure can occur (i.e., wet and dry
spells during the NAM), or characterized by a marked diurnal cycle of
cloudiness.

In a comprehensive study to benchmark different NWP models and
MOS GHI products, Perez et al. (2013) shows a set of forecast accuracy
(normalized) metrics for the Desert Rock site (∼100 km northwest of

Table 2
Day-ahead hourly GHI and Kt* forecast accuracy during August 1, 2015 to December 31, 2016 (all analysis periods) for different error metrics, MOS approaches, and
scenarios (see text for details). Analysis performed for WRF output at 2 km grid size and for initialization times starting at 00 and 12 UTC. Hatched cells indicate the best
performing error metric among the different scenarios.
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Las Vegas) that help contrast our results for the NREL-UNLV site. Perez
et al. (2013) used year-long GHI forecast products (May 1, 2009 to April
30, 2010) and estimated that the error associated with Persistence at 00
UTC was 19% for rMAE and 29% for rRMSE. In contrast, our NREL-
UNLV site is 20.9% for rMAE and 36.1% for rRMSE. Although both sites
are located in regions exposed to arid climate environments and sur-
rounded by complex terrain, differences in the Persistence approach
could also be attributed to factors that include local cloud forcing and
interannual climate variations. Larger Persistence error metrics sug-
gested higher cloudiness variability at the NREL-UNLV site than around
the Desert Rock area.

Fig. 6 and Table 2 show that both MOS Q-Q and MOS linear ap-
proaches effectively removed the GHI MBE, while also improving
overall error metrics. MOS GHI accuracy improved 2.8–3.6% for rMAE
and 4.7–5.8% for rRMSE. Our results also showed that the MOS linear
approach outperformed MOS Q-Q by small margins (∼1%) when
considering rMAE and rRMSE. The MOS approaches are efficient
techniques for removing bias and improving the overall accuracy when
model products show systematic errors (Verzijlbergh et al., 2015; Perez
et al., 2013). For example, Perez et al. (2013) showed MOS GHI accu-
racy gains relative to a set of NWP models implemented at the Desert
Rock site ranging from 2% to 8% for rMAE and 2% to 9% for rRMSE.

The results presented here and other studies highlight the

fundamental role of MOS tools in improving the accuracy of NWP
systems for solar irradiance forecasting. In agreement with Voyant et al.
(2015), our results also show that the effectiveness of any MOS tool can
vary more notably across different locations than the differences among
the MOS approaches themselves at any one site. Additionally, the
magnitude of the improvements appears to be slightly sensitive (∼2%)
to the training scenarios (Section 2.4.1), with a consistent tendency to
improve accuracy in all error metrics when training the MOS using the
seasonally adjusted and WxF1 scenarios, as shown by the hatched cells
in Table 2. Similar gains were shown in Verzijlbergh et al. (2015) when
using alternative weather parameters (RMSE=40%) relative to stan-
dard methods (RMSE=43%) that use the GHI observations to correct
the bias in forecasted GHI.

Our results showed a small difference in the model’s performance
when considering the initialization times (00 UTC and 12 UTC). The 00
UTC outperformed 12 UTC model output for all accuracy metrics by
0.1–0.5%, except for GHI MBE, that tended to be larger for initializa-
tions at 00 UTC by up to 3W/m2. Consistent with Perez et al. (2013),
however, there were no measurable advantage apparent between the
initialization times after MOS was applied.

Our focus was to show the overall impact of training MOS GHI and
Kt∗ forecasts by compositing with meaningful regional synoptic pat-
terns (WxF2) that are related to increased cloud variability in the Las

Table 3
Day-ahead hourly GHI and Kt* forecast accuracy during the August 1, 2015 to September 30, 2016 and July 1, 2016 to
September 30, 2016 (only available North American Monsoon season periods) for different error metrics, MOS approaches,
and scenarios (see text for details). Analysis performed for WRF output at 2 km grid size and for initialization times starting
at 00 and 12 UTC. Hatched cells indicate the best performing error metric among the scenarios.
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Vegas area. Table 3 shows accuracy error statistics during the NAM
periods for three different training scenarios. In general, improvements
in the error patterns described earlier (Table 2) tend to hold during the
NAM season with few exceptions. A striking result is that NAM GHI
rMAE and rRMSE reduced by 1m–2% from the seasonally adjusted
scenario to the seasonally adjusted discriminating with WxF2 scenario.
Additionally, discriminating with WxF2 increased GHI r from 0.5 to
0.57.

Fig. 5 summarizes the forecast accuracy yielded by the proposed
approaches during the NAM season. Kt∗ accuracy gains were better
than those using the GHI across the different error metrics. The solar
forecast accuracy using WxF2 improved all error metrics with MOS
linear approach outperforming the MOS Q-Q approach. Despite kt∗
being defined as a non-stationary parameter, further benefits were
gained when the seasonally adjusted scenario was applied. The WxF1

and WxF2 scenarios also enhanced forecast accuracy using the kt∗
parameter.

Fig. 6 shows that the GHI high-bias structure appeared to be linear
and proportional to the GHI intensity with apparent lower performance
during observed cloudy days. However, the clear-sky index tends to be
bimodal (Reno et al., 2012), with relatively high frequency of very
cloudy hours and clear sky values. With lower frequency of inter-
mediate values, the clear-sky index transformation appears to be more
effective in accuracy gains.

Figs. 6 and 7 show the error statistics for the mean diurnal cycle
using the seasonally adjusted WxF1 scenario. Not surprisingly, rMBE
results show that Persistence is unbiased throughout the day, and again,
the raw model and MOS approach outperformed Persistence in all other
evaluted metrics, except for late afternoon when Persistence tended to
improve. This likely was because of the marked diurnal cycle (Fig. 3).
The model showed an asymmetrical error structure with the best per-
formance around 10–12 LST, and the worst performance during after-
noon hours. This could be explained by the nature of afternoon cumulus
and cumulonimbus clouds. Lower performance during the afternoon
can be related to afternoon surface heating that supports lower tropo-
sphere mixing and atmospheric boundary layer convective clouds (Kim
et al., 2016). These features are more pronounced during the warm
season, including regions with arid and semiarid climates (Alessandrini
et al., 2015). Fortunately, the model performed better during high solar
elevation angles, but the poorer performance during low solar elevation
angles limited the ability to schedule solar power when an afternoon
power ramp is expected (Shedd et al., 2012).

Another striking result in Figs. 6 and 7 is that the MOS linear ap-
proach outperformed the MOS Q-Q approach for both GHI and kt∗.
Figs. 6 and 7 showed a near zero rMBE for MOS Q-Q when averaged
throughout the study period. To some extent, this was true for all sce-
narios examined with mean residual differences well below 1W/m2.
Mean diurnal cycle showed that such error was the product of bias
compensation during the day, however, with negative (positive) GHI
(Kt∗) rMBE during low solar elevation angles and positive (negative)

Fig. 5. NAM GHI and Kt* forecast metric difference (seasonally adjusted discriminating
with WxF2 minus seasonally adjusted only). Only August to September 2005 and July to
September 2016 are considered.

Fig. 6. Day-ahead GHI rMBE (upper-left panel), rMAE (upper-right panel), rRMSE (lower-left) and r (lower-right) for Persistence, raw WRF model, and seasonally adjusted MBO Q-Q and
linear approaches. Forecast valid for NREL-UNLV at 00 UTC.
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rMBE during high elevation angles. The MOS linear approach was un-
biased during most of the day, except for a small, positive late afternoon
GHI and Kt∗ rMBE.

Fig. 8 shows error rMBE per month and hour of day, highlighting
that GHI and Kt∗ high biases are positive and systematic throughout the
year and during the day (with an all time mean GHI and Kt∗ rMBE of
+18% and 17.6%).

Both the GHI and Kt∗ high biases showed a seasonal dependence
with larger magnitude during the spring and summer seasons, likely
related to increased storminess and moisture transport associated with
the passage of troughs and closed lows in the spring and early summer

(Oakley and Redmond, 2014) and the NAM in July–September (Mejia
et al., 2016). These biases exposed structural issues in the WRF model
output, that may be avoided by improving its integration configuration
and using other model physics. One note is that other studies have
found that GFS, which is used to drive the WRF model, also tends to
have a GHI positive bias during clear sky conditions, when averaged
over the U.S. CONUS (Mathiesen and Kleissl, 2011). However, GFS may
have significantly changed as several structural technological im-
provements have been made since then, including the resolution and
data assimilation system. Examining the reasons for such model defi-
ciencies, either in the GFS or regional WRF model, is a challenging task
and is outside the scope of this study. Model systematic error, however,
allows for MOS to be used to produce a bias-corrected forecast. Fig. 9
also show that MOS linear provides a more uniform bias correction with
less monthly and diurnal dependency.

Figs. 10 and 11 show the overall accuracy gain in GHI and Kt∗,
respectively, estimated as the difference between MOS minus the raw
WRF error, using MOS Q-Q and linear with the seasonally adjusted
WxF1 scenario. Of note is that the MOS linear approach tended to
perform better, as measured by rMAE and rRMSE, and more uniformly
in time than the Q-Q approach. Furthermore, GHI accuracy showed
losses that tended to accur at low sun elevation angles during the day,
whereas Kt∗ showed accuracy losses that tended to occur during high
sun elevation angles. The seasonal and diurnal distribution of accuracy
metrics confirmed that the bias corrections on the Kt∗ parameter tended
to respond better than the GHI. Additionally, MOS linear in combina-
tion with the seasonally adjusted scenario tended to provide better
forecast irradiance results than the Q-Q approach.

4. Discussion and conclusion

We developed a procedure that can be used to improve the accuracy
of day-ahead NWP-based GHI and Kt∗ forecasts for NREL-UNLV, an
observation site located in Las Vegas, Nevada by performing a detailed
forecast error assessment using 17months of real-time GHI forecast

Fig. 7. Same as in Fig. 6 but for the Kt* parameter.

Fig. 8. Hourly day-ahead GHI and raw WRF model pairs at 00 UTC color coded by hour of
the day.
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products. The improvements were performed by conditioning the GHI
forecasts to post-processing procedures consisting of MOS approaches
and to training scenarios that are seasonally adaptive and incorporate
moist states and regional weather circulation patterns.

The MOS approaches and training scenario strategies proved to be
effective tools to correct systematic biases in the model, but also dis-
criminated the error structure and timing of the convective processes
using weather functions that relate the regional weather patterns that
drive cloudiness variability in the area of interest. These post-proces-
sing procedures helped us objectively interpret and improve NWP-
based GHI and Kt∗ forecasts for the NREL-UNLV site. Understanding the
NWP-based error structure can potentially improve solar forecasts from
NWP. The procedures outlined here can be useful for other locations in
the southwestern U.S., where GHI forecast errors are affected by the
NAM. A limitation in the described approach is that additional data are
required to estimate the regional weather circulation patterns related to
NAM moisture surges. Additionally, model versions may change more
frequently than the record length needed for robust weather functions
(the adaptive approach of the seasonally adjusted scenario can mitigate
part of this issue). The moisture transient processes related to the NAM,
processes that are observable and predictable –at least for the day-
ahead forecasting window-prove to be fundamental in unveiling the
value of solar forecasts in the region.

In general, we stress that development of higher-resolution NWP GHI
and Kt∗ products is justifiable as the WRF model includes improved
bottom boundary conditions (land use, vegetation coverage, topography,
land/water mask) relative to its global initial and boundary condition
driver; and more complex processes with more sophisticated schemes
and realistic detail (e.g., explicit convection/cloud resolving scales). Of
note is that both the raw model output and MOS forecasts add value
when compared to Persistence. Using day-ahead NWP-based GHI fore-
casts involved intricate model error characteristics, however, with mea-
surable uncertainties that depend on the season and time of day.

MOS implementation was fundamental to removing model sys-
tematic biases and the trend in accuracy gain appears to be sensitive to
MOS approaches and scenarios. The magnitude of the trends was
marginal, and more work is required to incorporate more meaningful
and intelligent weather functions to better discern the error structure in
cloudiness. Alternatively, GHI and Kt∗ forecasts appear to be in-
dependent of the forecast initialization time. The relatively low sensi-
tivity of training scenarios in the accuracy (< 2–3%) of the model and
the systematic errors suggests some stationarity in the variability of the
data. However, model tends to perform better in the morning and
around noon than during the afternoon). Results for both the GHI and
Kt∗ support that MOS linear outperforms the MOS Q-Q approach, with
larger accuracy gains shown by the Kt∗ parameter. These results suggest
that Kt∗ could be used to help improve GHI forecasts, as supported by
Reno et al. (2012).

Systematic high GHI biases suggest that testing other driving global
NWP systems or other regional NWP model configurations and physics
are warranted. Further work is necessary for developing weather
functions relating the cloudiness from other synoptic transients and
local conditions during different seasons, as shown by the relatively low
NWP-based GHI accuracy during spring. The sensitivity around MOS
approaches and training strategies, although marginal in some cases,
can help create dispersive ensemble model output statistic solutions
(EMOS; Sperati et al., 2016). Benefits of a MOS-based ensemble ap-
proach are clear because of their high efficiency compared to global and
regional NWP ensembles. Alternatively, we plan to apply the described
concepts to other sites and regions and argue that the training scenarios
based on seasonal adaptation of the MOS are transferable to any region
(where annual variability in cloudiness is large, and the flow regimes
can change the cloud frequency, type, and formation processes – in-
cluding other local variability drivers, such as smoke, mineral aerosols,
etc.). Next, we plan to complete an assessment of the benefits of NWP-
based GHI forecasts on power output and ramps.

Fig. 9. Day-ahead hourly GHI rMBE per month [YYYYMM] and per hour [LST] for Persistence (upper-left panel), raw WRF model (upper-right panel), and MOS Q-Q (lower-left panel)
and linear approaches (upper-right panel) using seasonally adjusted WxF1 scenario. Forecast valid for NREL-UNLV at 00 UTC.
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Fig. 10. Day-ahead hourly GHI rMAE (top panels) and rRMSE (bottom panels) differences for MOS Q-Q raw (left panels) or MOS linear (right panels) minus raw WRF model per month
[YYYYMM] and per hour [LST] using the seasonally adjusted WxF1 scenario. Forecast valid for NREL-UNLV at 00 UTC. Negative (positive) values indicate a net gain (loss) in the accuracy
metric by implementing the MOS approach and scenario relative to the raw WRF model.

Fig. 11. Same as in Fig. 9 but for Kt*.
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