
Self-managed Elastic Scale Hybrid Server Using 

Budget Input and User Feedback 

Jose T. Painumkal    Rui Wu    Sergiu M. Dascalu    Frederick C. Harris, Jr 

 

Department of Computer Science and Engineering 

University of Nevada, Reno 

Reno, NV, USA 

 

josepainumkal@nevada.unr.edu    {rui, dascalus, fred.harris}@cse.unr.edu 

 

 
Abstract—To simplify implementation and management of web-

based applications, project managers usually choose to rent 

powerful servers from third party companies, such as Amazon 

(Amazon Web Services) and Microsoft (Azure). However, in this 

case, it is rather hard to follow an efficiency plan based on the 

available budget and the users’ feedback. In particular, it could 

be costly when the manager forgets to shut down the servers 

when not using them, as the related price may become 

ridiculously high. Even though some third party companies 

offer budget notification services, such as Amazon Budgets, it is 

still difficult to control the usage of the rented servers. 

Furthermore, the managers need to change their budget based 

on the feedback received from their own users. For example, if 

the users complain the waiting time is too long, the managers 

need to increase the allocated server budget. In this paper, we 

propose a modified elastic scale hybrid server method based on 

the available budget and the users’ feedback. The servers 

considered in the paper are called hybrid because they include 

both owned and rented servers. The proposed method uses 

queueing theory and user feedback to dynamically adjust the 

number of servers. The manager can obtain the approximate 

queue length and the user waiting time by inputting the budget. 

Using the proposed method, a prototype system was built to run 

environmental models. The results show that the proposed 

approach is better, and has lower job waiting time and queue 

length compared to the traditional FIFO approach. Also, the 

prototype can shut down the rented servers automatically when 

they are not being used and can predict both the queue length 

and the job waiting time. 

Keywords – elastic scale servers; hybrid servers; budget-based 

planning; environmental models; modified queueing theory 

I. INTRODUCTION 

The server-client architecture is widely used in the web-
based applications. When a Model-View-Controller (MVC) 
design is applied to a web-based application, it can make the 
client side very light [1]. For example, the Wildfire Simulation 
System presented in [2] is a web-based application that uses 
this design. This means that the user is able to run a complex 
program with only some necessary software installed and 
some data stored on the client side. However, this method is 
not perfect. It requires powerful servers to deal with complex 
tasks and to communicate with the client side (usually through 
RESTful APIs). If the servers are not powerful enough, the 

requests (such as searching and item from a database storing 
huge data) may not be finished within the desired response 
time and the user may notice the delay.  

To build a powerful server cluster, the project managers 
can purchase machines and set up servers locally or they can 
rent servers from the third party companies. The prevalent 
choices are AWS (Amazon Web Service) from Amazon and 
Azure from Microsoft. In our opinion, a practical method is to 
have a core cluster of owned servers and rented servers from 
the third party companies based on the actual needs. However, 
when this idea is applied in the real world, a question cannot 
be avoided: what is the trade-off between the rental budget and 
the server performance? To our knowledge, there is not yet 
available a method that deals with this problem efficiently. 
Some companies provide budget notifications and offer 
surveys to help project managers understand various 
operational situations. However, these functions cannot 
predict the user waiting time and the queue length. 

In this paper, we propose a self-managed method for an 
elastic scale hybrid server model. It can be applied to server 
clusters containing both owned servers and rented servers. 
The method uses modified queueing theory to predict the job 
waiting time and the queue length based on the budget. The 
system can evolve based on the average job time consumption 
and notify the project manager to adjust the rental budget 
based on the user feedback. More details are presented later, 
in the Proposed Method and Prototype System sections. 

The rest of the paper is organized as follows: Section II 
introduces the research background; Section III presents the 
proposed method aimed at estimating the queueing length and 
the user waiting time; Section IV describes a prototype system 
we built and presents the techniques used in the system; 
Section V provides a comparison of the results obtained 
between the proposed method and the traditional FIFO 
method; and Section VI contains the paper’s conclusions and 
outlines planned future work. 

II. BACKGROUND AND RELATED WORK 

The concept of “elastic server” has been around for a while. 
Some third party companies such as Amazon provide this 
service. Amazon EC2 (Elastic Compute Cloud) is one of the 
most commonly used elastic services, updated in December 
2016 to support auto-scaling [3]. Previously, the rented cluster 
was removed on termination. This means that when one 



removes each machine in the cluster, everything will be 
removed and the project manager will need to manually scale 
up and scale down the number of servers. Now, Amazon EC2 
Auto Scaling enables the servers to scale up and scale down 
automatically. There are two main methods to achieve this: (i) 
Based on events – for example, if the CPU utilization passes 
a certain threshold, Amazon will spin up EC2 instances to 
lower the CPU utilization and when the CPU utilization comes 
down, the EC2 instances will be shut down; and (ii) Based on 
schedule – for example, when normally most users use a 
website during the day and consequently the website manager 
sets a rule based on time, such as that from 7:00 am to 7:00 
pm more servers should be rented.  The Amazon EC2 Auto 
Scaling is also very easy to use. The project manager needs to 
group instances into auto scale groups and set operation rules.  

However, this service is not perfect, especially when auto-
scaling servers based only on events or schedules. The main 
issues are: (i) When the servers are auto-scaled, it is also hard 
to control the budget. The service may scale up the servers and 
go over the budget; and (ii) the auto-scale service can shut 
down some servers when the CPU utilization or network 
utilization are below a threshold. However, these events 
cannot truly represent that these servers are not needed. It is 
possible that they are just busy with some low-CPU or low-
network jobs. Thus, the best way should be for the servers to 
control themselves because no one knows better than the 
servers about what is going on inside of the machines. 
Therefore, the method proposed in this paper shuts down the 
servers based upon an evaluation performed when each job is 
completed. 

There are many studies conducted in the field of dynamic 
provisioning of computing resources in a cloud environment. 
Calheiros et al. [4] proposed an adaptive provisioning 
technique based on analytical performance and workload 
information to offer end users the guaranteed Quality of 
Services (QoS). The QoS targets were application specific and 
were based on requests service time, rejection rate of requests 
and utilization of available resources. 
The proposed model uses the observed system performance 
and predicted load information to estimate the number of 
virtual machine instances to be allocated for each application. 
Zhu et al. [5] proposed a feedback control based dynamic 
resource provisioning algorithm for allocating computing 
resources with budget constraints. The proposed model was 
intended to maximize the application QoS requirements by 
meeting both time and budget constraints. This was facilitated 
through the dynamic provisioning of CPU cycles and memory 
to multiple virtual machines in the cluster. 
However the proposed model requires the reconfiguration of 
computing resources in the available machine instances rather 
than the addition/removal of virtual machines from cloud 
provider. Bi et al. [6] proposed a dynamic provisioning 
technique to optimize the resource provisioning in cluster-
based virtualized multitier applications using a hybrid 
queueing model. The goal of the research was to predict the 
number of VMs required for a virtualized multitier application 
such that the all the incoming requests can be serviced with a 
given response time.  

In this paper, we propose a self-managed server system to 
facilitate elastic scaling in a hybrid server environment, based 
on the budget amount and user feedbacks, using an improved 
queuing model. In the proposed approach, waiting time and 
queue length of the job requests were estimated based on the 
budget input. The feedback from users are continuously 
monitored and offers a facility to improve the QoS 
target.  Since cloud providers follow usage based payment 
structure, our approach is more useful as it relates budget 
amount directly with the desired QoS targets (here, waiting 
time for the jobs) and thereby helps managers in making 
budget decisions more easily. 

III. PROPOSED METHOD 

This section introduces a method to estimate the job queue 
length and the job waiting time. For simplified presentation 
purposes, an hour is used as the time unit. In the practical use, 
it can be any other time units. 

A. Original Queuing Model 

One of the simplest queuing models is the classical first-in 
first-out (FIFO) approach [7]. The idea is that the first job that 
comes into the queue will leave first, and so on. In this paper, 
we have compared our proposed method with this queuing 
model, and the results are shown in Section V. 

An M/M/1/1/∞/∞ queuing model is another simple and 
practical queuing model [8]. This queuing model represents 
the following situation with a Poisson distribution [9] where 
jobs arrive at a rate of λ/hour and the server processes the jobs 
at a rate of µ/hour (typically, this is considered exponential). 
There is one server; the queue length can be infinite, and the 
population (maximum number of the jobs at the same time) 
can be infinite. Based on [8], when λ (job arrivals rate) is less 
than µ (server processes rate), the expected queue length is: 

𝐿 =
𝜆2

µ2 − 𝜆 ∗ µ
(1) 

and the average job waiting time in the queue is: 

𝑇 =
𝜆

µ2 − 𝜆 ∗ µ
(2) 

B. Applied Modified Queuing Model 

The M/M/1/1/∞/∞ queuing model was modified and 
applied in our prototype system. The idea is to develop a 
formula to estimate the average job waiting time and queue 
length in a hybrid server environment using the budget 
amount, budget period, cost of rented instances, and the 
average time for job execution. The modified queuing model 
processes jobs with owned servers and rented servers.  For the 
given budget, B and average job execution time, Town, the 
owned servers can process a maximum of (N0*Tb)/Town jobs 
during the budget period Tb, where No denotes the number of 
owned servers. 

 If a rented instance costs $P for an hour of usage, then                          
B/ (P*Trent) is the total number of jobs that can be processed 
with rented servers for the given budget amount B. 
To achieve a stable service, the usage of rented servers are 
distributed uniformly during the budget time period Tb, which 
means the project manager should rent a server at every time 



interval, Tint = (Tb*Trent*P)/B, if the owned servers are busy. 
At every Tint interval, if the owned servers are available (which 
means the job queue is empty), then the system needs not spin 
up a rental server for the incoming job. The system will also 
increment a counter variable, so that later, if a job comes in 
and the owned servers are busy, the system will rent a server 
immediately. This way, the proposed approach ensures that 
rented workers were utilized judiciously throughout the entire 
budget period. During the budget period, the hybrid server 
system could process a maximum of (N0*Tb)/Town + B/ 
(P*Trent) jobs.  

Therefore, based on formula (1), the expected queue 
length is: 

𝐿 =
𝜆2

(
𝑁0

𝑇𝑜𝑤𝑛
+

𝐵
𝑃 ∗ 𝑇𝑟𝑒𝑛𝑡

 )
2

−   𝜆 ∗  (
𝑁0

𝑇𝑜𝑤𝑛
+

𝐵
𝑃 ∗ 𝑇𝑟𝑒𝑛𝑡

 ) 

      (3) 

 
and based on formula (2), the average job waiting time in the 
queue is: 

𝑇 =
𝜆

(
𝑁0

𝑇𝑜𝑤𝑛
+

𝐵
𝑃 ∗ 𝑇𝑟𝑒𝑛𝑡

 )
2

−   𝜆 ∗  (
𝑁0

𝑇𝑜𝑤𝑛
+

𝐵
𝑃 ∗ 𝑇𝑟𝑒𝑛𝑡

 ) 

      (4) 

 
As an example assume that the project manager has five 

owned servers and each job takes an average of 10 minutes to 
finish the job on both owned and rented servers. Thus, the 
owned servers can finish 30 jobs in an hour.  
If the manager has $100 for a budget period of one hour and a 
rented instance costs $1 to rent a machine per hour, then the 
$100 can be used to rent 600 jobs during the one hour budget 
period. (The rented instance is stopped on the completion of 
the assigned job). A uniform distribution of server rentals 
means the project manager has to rent a server every 0.1 
minute, if there is at least one job in the job queue. If no jobs 
are in the queue, then we record the occasion to a counter 
variable and wait for the next job. Thus in this scenario, the 
hybrid server system can process a total of 630 jobs (i.e. µ = 
630) during the budget period of one hour. 
If 500 jobs arrive per hour (i.e., λ=500) then, based on (3) and 
(4), the expected queue length is 3.0525 and the average job 
waiting time is 0.0061. 

C. User Feedback 

User feedback is one of the most important inputs for the 
project manager. To collect this information, the system 
requests the user to complete a survey about the system 
performance, such as the waiting time and the response speed. 
The users may not want to fill the survey if they are satisfied. 
However, if they are not satisfied (e.g., waiting for a long 
time), there is a high possibility that they will complain 
through the survey. The project manager should give weights 
to each question and options. For example, “Do you think you 
are waiting too long for the service?” has 0.8 weight factor and 
this question has three choices: Yes (worth +1 point), Not sure 
(worth 0 point), and No (worth -1 point). If the user chooses 
“Yes”, the feedback collector will add 0.8*1=0.8 point to the 
global feedback value. The weights are decided by experience 
in our current prototype system and we are working to classify 
user feedback into different weight categories with machine 

learning techniques. If the feedback value passes a certain 
threshold, the system will send a notification email to the 
project manager to raise the budget. 

IV. PROTOTYPE SYSTEM  

In this section, we give an overview of the developed 
system and describe how the proposed elastic-scale approach 
was implemented. Part of the larger NSF EPSCoR-funded 
Virtual Watershed project [10] and [11], the objective of the 
developed system has been to provide a computing platform 
for hydrologists to run different environmental models and 
acquire results of various model runs. The Precipitation 
Runoff Modeling System (PRMS) [12] is one of the 
environmental models supported in the Virtual Watershed 
platform and represents the workload for this study. 

The platform is structured with a micro-service 
architecture, in which each service is highly independent in 
nature and is designed to perform a particular task. We used 
the latest container based virtualization technology, Docker 
[13], to implement various services required for the system. 
Using Docker, a service can be packaged into a self-contained 
lightweight software container. The container provides an 
isolated running environment which will have all the required 
libraries and dependencies to run the service. In our system, 
we packaged the services such as user authentication, data 
storage, model data processing, etc. into separate Docker 
containers. The containers communicate between each other 
through a restful API service. All the containers reside on a 
single host machine. 

To run a model, the user has to use the API service to 
upload all the input files required by the specific 
environmental model to our system. The files will be stored in 
the storage location (Mongo DB) and a unique model id will 
be generated. The model id will be then placed onto an 
asynchronous job queue. The worker container which is 
configured to listen to the job queue will grab the model id 
from the queue, obtain the input files for the model run from 
the storage location, and start processing the model run. Once 
the model processing is finished, the generated output files 
will be stored into the storage location so that user can later 
download the files and evaluate the results. The length of the 
job queue is infinite and there can be any number of jobs in 
the queue. There are limitations on the number of jobs 
concurrently processed by the worker container. When more 
jobs are waiting in the queue, the users have to wait more time 
to start the processing of their job. This would cause 
frustration among the users and distract them from using the 
platform. This problem could be solved by adding more 
worker containers to the platform. However, the addition of 
more workers to the same host machine could cause serious 
performance issues. The Docker container consumes 
computing resources on the host machine, depending on what 
kind of job is being processed inside the container. Due to this 
dependency on the resources of the host machine, the addition 
of more worker containers on the same host machine is not 
feasible. Therefore, a solution to this problem is to incorporate 
more host machines into the current platform and distribute 
the worker containers among different machines. This way, all 
the workers would grab the job from the job queue, process 



the jobs concurrently, and store the results at a common 
storage location for further reference. 

 
 

Figure 1. Proposed hybrid server system 

To implement the proposed approach, a multi-host swarm 
cluster was created in which one machine will act as the 
swarm master. Any number of hosts can be added to the 
swarm cluster. The architecture of the system is shown in 
Figure 1. Host0 acts as the swarm master and it contains the 
owned worker container. The other Docker containers 
handling different services were also deployed on the Host0 
machine. The rented workers are distributed across several 
remote machines. To keep the prototype system simple, only 
one worker container is allocated per machine and the number 
of jobs to be processed by the worker at a time is limited to 
one. An overlay network is used to connect the Docker 
containers across multiple hosts and hence the containers can 
communicate with each other. The worker containers are 
configured to listen to the job queue so that as long as the 
container is in an active state, it starts picking jobs from the 
job queue and initiates the processing of the jobs. The popular 
distributed task queue, Celery, was used to implement the job 
queue in the prototype system, which handles the execution of 
the jobs asynchronously. The task manager module is placed 
inside host0 and it can start, stop, and delete worker nodes. To 
facilitate the creation and deletion of Docker containers at 
will, the python library for Docker engine API, docker-py was 
used. 

The proposed self-managed hybrid worker system 
autonomously decides when to use rented or owned workers 
taking into account the impact the action can bring on the 
waiting time of the jobs in the queue. The prototype system 
can delete the containers and shut down the servers when they 
finish their jobs. This is done by sending a signal from the 
working rented server after it finishes the execution of its job.  
In this way, the system ensures maximum productivity and 
avoids unnecessary expenses due to resource wastage. 
However, the prototype is not fully self-managed as it requires 
the manager to change the budget based on the users’ 

feedback. In the current prototype system, the remote 
instances are represented using three physical machines. In a 
non-prototype system, the physical machines could be 
replaced with instances from cloud providers. 

 
Figure 2. Algorithm to create rented worker 

      Figure 2 shows the logic for creating new rented workers 
in the proposed system. The project manager can modify the 
budget in the middle of an execution and the system updates 
N accordingly with the changes in the budget amount. Every 
Tint interval, the system would check the job queue to 
determine whether there is any necessity for rented workers. 
If the queue is not empty, then a new worker container is 
created and added to the system. If the queue is empty during 
the evaluation at Tint interval, the system records such 
occasions to a counter, and later compensates for those unused 
occasions by creating more rented workers during busy times 
up to the counter. This process will be repeated until the 
number of jobs rented equals N, the maximum number of jobs 
that could be processed with rented containers for the given 
budget. The algorithm guarantees the cost will be within the 
budget because: 1) the algorithm only rents a worker when the 
job queue is not empty, which also means all owned workers 
are busy; 2) when there are no unused rentals, the algorithm 
checks the queue every time interval. 

 
Figure 3. Screenshot of the configuration manager module 



       The proposed system includes a configuration manager 
module, where the manager could enter details such as the 
budget amount, price of machine instances, expected job 
arrival rate, and budget period. The system calculates the total 
jobs that can be rented and also provide estimations on the 
expected waiting time for the jobs with the given budget 
amount. The module also includes a slider tool, which helps 
the manager to easily figure out how much money to spend to 
get the desired waiting time for the jobs. Figure 3 shows a 
screenshot of the configuration manager module in the 
prototype system and this part uses Equation (3) and Equation 
(4) presented in Section III.  

 
Figure 4. Screenshot of the user feedback score 

      The proposed system also includes a survey form where 
users can provide their feedback on the performance of the 
new approach. The survey is mainly intended to help 
managers to make policy decisions on the budget amount to 
be allocated. The survey results provide clear indications on 
whether the allocated budget is sufficient enough to provide a 
good user experience with the platform. The survey mainly 
collects feedback on the waiting time, responsiveness, and 
overall performance of the system. Figure 4 shows a 
screenshot of the feedback score visualization. If the score 
passes a preset threshold, the system will send an alert email 
to the project manager.  

V. RESULTS 

       The proposed approach was evaluated by simulating a 
Poisson job arrival stream on the job queue. Each job 
constitutes one PRMS model run with real climate data. We 
have conducted experiments with different models and input 
data files, but because of the space limitation only one of them 
is shown. To execute one job, the worker takes an average of 
34 seconds (this simulates one-month of climate modeling). 
The initial execution time is obtained from experience and it 
is replaced with the average job execution time after the server 
starts working. Since the experiment was conducted with 
physical machines instead of machine instances from cloud 
providers, the cost of the host machine and the budget amount 
were simulated. For the experimental study, the system was 
allocated with a budget amount of $1.63 for a budget period 
of 20 minutes and the cost of the rented instance was 

considered to be $4.256/hour which is the current cost for a 
high end compute node on AWS. With the provided budget 
and price of instances, a maximum of 40 models could be 
processed with rented workers and the time interval Tint was 
estimated to be 30 seconds. i.e. during the budget period of 20 
minutes, the system would use a rented worker to execute the 
job every 30 seconds, provided the owned worker is busy at 
that time.  

 
Figure 5. Comparison of waiting time of jobs 

Figure 5 shows the comparison of the waiting time 
between the FIFO approach and the proposed elastic server 
approach. In the proposed hybrid elastic-server approach a 
rented container will be used only at regular time intervals, 
whereas in the FIFO approach a new rented worker container 
will be created and used to execute the job whenever the 
owned worker is busy. The drawback of the FIFO approach 
was that the rented workers may not last until the end of the 
budget period. Therefore, once the rented models are over, the 
incoming jobs have to wait more time in the queue causing a 
drastic increase in the waiting time. Whereas in the proposed 
approach, the rented jobs were used judiciously and hence the 
waiting time of the jobs was maintained at a controlled level 
throughout the budget period. 

 
Figure 6. Comparison of number of jobs waiting in the queue  

Figure 6 shows the comparison of the queue length 
between the FIFO approach and the proposed approach. In the 
FIFO approach, all the rented workers were finished around 
the 13th minute and it resulted in a steep increase of the queue 
length. In contrast, in the proposed approach the queue length 
was consistently maintained small throughout the budget 
period. 



The waiting time was calculated as the time taken by the 
worker to start the job once the job is added to the queue. As 
seen in Figure 5, the waiting time of the jobs showed several 
fluctuations during the monitoring period, some of which 
impacting both the FIFO and the proposed method. In the 
experiment, the rented worker containers were created from 
scratch using the base image. Depending on the resource 
utilization on the host machine, the container creation 
consumed several milliseconds to seconds. After the creation 
of a worker container, the worker took few more seconds to 
establish a connection with the configured job queue and pick 
a job from it. We can also see fluctuations in the proposed 
approach since the rented workers were created at regular time 
intervals Tint and this would also be a reason for observing 
variations in the waiting time.  

In the experiment, the FIFO approach ran out of the rented 
workers in 747.1 seconds. During this period, it finished 54 
jobs, 14 of them being completed by the owned workers. 
Therefore, the utilization rate of the owned workers was 
25.93%. In the same time period (747.1 seconds), the 
proposed system finished 40 jobs, 21 of them being completed 
by the owned workers. Thus, the utilization rate of the owned 
workers was 52.5%. It is evident from the results that the 
proposed method had a higher utilization rate of the owned 
workers and it saved more rented workers for later use.  

Based on Equation (3) and Equation (4), the expected 
queue length (number of job arrivals in the queue) was 1.46 
and the real queue length was 0.622. Theoretically, each job 
needed to wait 0.39 minute and in fact each job waited 0.34 
minute on average. This shows that the proposed method 
worked well in this job queue case. The experimental study 
was conducted with four machines with Intel i7 CPU, 16 GB 
DDR4 RAM, and 256 GB SSD. Multiple threads were used 
to handle the continuous monitoring of queue length and job 
status, the creation of rented workers, and the simulation of 
the Poisson job arrival stream. The time slicing between the 
different threads could also be a reason for fluctuations in the 
queue length and observed waiting time. The time 
consumption for starting and stopping a rented instance varies 
with the work load and the cloud hosting service. Normally, 
the starting time of an instance ranges between 30 seconds to 
6 minutes. Since our goal was to prove the applicability of the 
proposed approach, the experiment was conducted with 
comparatively shorter jobs and hence Tint value is also 
relatively small (less than a minute). However in real world 
scenarios, while dealing with high time consuming jobs, the 
estimated Tint value would be sufficiently large enough to 
accommodate the varying VM start time. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed a method to estimate 
queue lengths and waiting time based on a modified 
M/M/1/1/∞/∞ queue model. The method was used for elastic 
scale hybrid servers, which are a combination of owned and 
rented servers. The experimental results showed that our 
proposed approach performed better than the traditional FIFO 
queue model in what regards the average waiting time and the 
expected queue length.  

In its current version, the system can shut down the rented 
servers when they finish their jobs to save money. However, 
the project manager still needs to change the budget based on 
the users’ feedback. In the future, we plan to use machine 
learning techniques to improve this part. Also, we will work 
on enhancing our method to support multiple job queues and 
multiple hybrid servers. 

ACKNOWLEDGMENT 

This material is based upon work supported by the 
National Science Foundation (NSF) under grant numbers IIA-
1329469 and IIA-1301726, as well as by a University of 
Nevada, Reno Graduate Student Association research grant. 
Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not 
necessarily reflect the views of the NSF. 

REFERENCES 

[1] Leff, A. and Rayfield, J.T., 2001. Web-application development using 
the model/view/controller design pattern.  In Proceedings of the 5th 
IEEE International Conference on Enterprise Distributed Object 
Computing ( EDOC'01), pp. 118-127. 

[2] Wu, R., Chen, C., Ahmad, S., Volk, J.M., Luca, C., Harris, F.C. and 
Dascalu, S.M., 2016. A Real-time Web-based Wildfire Simulation 
System. In Proceedings of the 42nd Annual Conference of the IEEE 
(IECON-2016), IEEE Industrial Electronics Society, pp. 4964-4969. 

[3] Amazon, “AWS | Auto Scaling”, 2017. [Online]. Available: 
https://aws.amazon.com/autoscaling/. [Accessed: 11-Jan-2017] 

[4] R. Calheiros, R. Ranjan and R. Buyya, "Virtual Machine Provisioning 
Based on Analytical Performance and QoS in Cloud Computing 
Environments", 2011 International Conference on Parallel 
Processing, 2011. 

[5] Q. Zhu and G. Agrawal, "Resource provisioning with budget 
constraints for adaptive applications in cloud environments", 
Proceedings of the 19th ACM International Symposium on High 
Performance Distributed Computing - HPDC '10, 2010. 

[6] Bi, J., Zhu, Z., Tian, R. and Wang, Q., 2010, July. Dynamic 
provisioning modeling for virtualized multi-tier applications in cloud 
data center. In Cloud Computing (CLOUD), 2010 IEEE 3rd 
international conference on (pp. 370-377). IEEE. 

[7] Kruse, R. and Tondo, C.L., 2007. Data structures and program design, 
C. Pearson Education India, p. 78. 

[8] Karlin, S. and McGregor, J., 1958. Many server queueing processes 
with Poisson input and exponential service times. Pacific J. Math, 8(1), 
pp. 87-118. 

[9] Boddy, R. and Smith, G., The Poisson Distribution. Statistical Methods 
in Practice for Scientists and Technologists, pp. 111-119. 

[10] Dascalu, S., 2014. Scientific Collaboration in Virtual Environments: 
The Western Consortium Watershed Analysis, Visualization, and 
Exploration (WC‐WAVE) Project. Proceedings. of the International 
Conference on Collaborative Technologies and Systems (CTS‐2014), 
pp. 560‐561. 

[11] Carthen, C., Rushton, T.J., Burfield, N., Johnson, C.M., Hesson, 
A.,Nielson, D., Worrell, B., Delparte, D.,  Chapman, T., Johansen, 
W.J., Lew, R., Wood, N.R., Ziegler, M., Anderson, J. W., Dascalu, 
S.M.,  and Harris, F.C., Jr., 2016, September. Virtual Watershed 
Visualization for the WC-WAVE Project. International Journal of 
Computers and Their Applications, 23 (3): 195-2 

[12] Leavesley, G.H., Lichty, R.W., Thoutman, B.M. and Saindon, L.G., 
1983. Precipitation-runoff modeling system: User's manual (p. 207). 
Washington, DC: USGS. 

[13] Docker, "Docker", Docker, 2017. [Online]. Available: 
https://www.docker.com/. [Accessed: 13- Jan-2017] 

 


