
978-1-5090-4601-0/17/$31.00c©2017 IEEE 

Parameter Estimation of Nonlinear Nitrate Prediction 

Model Using Genetic Algorithm 
Rui Wu*    Jose T. Painumkal*    John M. Volk^    Siming Liu* 

Sushil J. Louis*    Scott Tyler^    Sergiu M. Dascalu*   Frederick C. Harris, Jr* 

 
*Department of Computer Science and Engineering 

University of Nevada, Reno 

Reno, NV, USA 

^Department of Geological Sciences & Engineering 

University of Nevada, Reno 

Reno, NV, USA

 
*{rui, sushil, dascalus, fred.harris}@cse.unr.edu   *{josepainumkal, liusiming}@nevada.unr.edu   ^{jmvolk, styler}@unr.edu

 

 
Abstract—We attack the problem of predicting nitrate 

concentrations in a stream by using a genetic algorithm to 

minimize the difference between observed and predicted 

concentrations on hydrologic nitrate concentration model based 

on a US Geological Survey collected data set. Nitrate plays a 

significant role in maintaining ecological balance in aquatic 

ecosystems and any advances in nitrate prediction accuracy will 

improve our understanding of the non-linear interplay between 

the factors that impact aquatic ecosystem health. We compare the 

genetic algorithm tuned model against the LOADEST estimation 

tool in current use by hydrologists, and against a random forest, 

generalized linear regression, decision tree, and gradient booted 

tree and show that the genetic algorithm does statistically 

significantly better. These results indicate that genetic algorithms 

are a viable approach to tuning such non-linear, hydrologic 

models. 
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I. INTRODUCTION 

Nitrogen is a major nutrient that is essential for plant and 
animal growth. Although nitrogen is often a limiting nutrient, an 
abundance of inorganic species such as nitrate (NO3) causes 
excessive growth among primary producers that often results in 
low levels of dissolved oxygen, fish kills, toxic algal blooms, 
and toxicity to aquatic organisms. [1][2][3]. Nutrient enrichment 
from nonpoint sources such as fertilizer runoff was identified as 
one of the largest impairments to surface water quality in the 
United States [4]. Daniel et al. suggest 70% of the fertilizers and 
feed applied to farms in the US is either lost to soil storage or 
transported to surface or groundwater [5]. Additionally, sewage 
effluent, burning of fossil fuels (emits NOx and N2O), energy 
production, and industrial activities also can lead to increased 
nitrate in the environment [6][7][8]. Nitrate is mobile in 
groundwater, and drinking nitrate contaminated water has been 
linked to infant methemoglobinemia (MetHb), among other 
human health issues [9][10]. For these reasons, it is critical to 
measure and predict nitrate loads in rivers to better inform 
governmental and nongovernmental agencies such as policy 
makers, environmental groups, and water suppliers.   

There are different models utilized by hydrologists to 
determine nitrate content in water. These prediction models use 
other constituents present in water to predict the NO3 content. 

The models mainly differ from each other in the number of 
constituents they need to make the predictions. In this paper, an 
improved nonlinear prediction model is used to predict the NO3 
content in water. The proposed model uses six constituents - 
organic nitrogen, orthophosphate, pH level, dissolved oxygen, 
temperature, and discharge to make the predictions on NO3 
content. The model contains 12 parameters, which need to be 
calibrated effectively to improve the accuracy of the predictions. 
Due to the nonlinearity of the model, the calibration of the model 
parameters is highly complex. In this paper, a genetic algorithm 
based approach for parameter estimation of nitrate prediction 
model is proposed. 

Genetic algorithms (GA) are a powerful adaptive search 
technique that use the concepts of natural selection to mimic the 
process of biological evolution to efficiently solve optimization 
problems [12]. On searching over a large multidimensional state 
space, GAs can outperform other conventional search 
techniques due to its simplicity, effectiveness, versatility and 
robustness [13]. For the calibration of the proposed model, a 
genetic algorithm was found to be a feasible approach due to the 
following reasons. 1) the nonlinearity of the model 2) presence 
of many parameters and 3) vast search space and 4) higher 
possibility of convergence towards optimal values for the 
parameters. 

To evaluate the performance of the proposed approach, we 
compared results from the GA tuned model with the prevalent 
environmental tool, LOADEST applied for predicting nitrate 
loads in Hellbranch Run, a protected stream in central Ohio [14]. 
LOADEST is a software tool offered by the United States 
Geological Survey (USGS), and is widely used by hydrologists 
to estimate the constituent loads [M/T] in water channels [15]. 
Besides LOADEST, the results of the genetic algorithm were 
compared with four other regression methods such as 
generalized linear regression, gradient boosted tree regression, 
random forest regression, and decision tree regression. 

The rest of this paper is organized as follows: Section II 
describes the prior work. Section III introduces the methodology 
and various aspects of the proposed approach. Section IV 
presents the results and its interpretation. Section V concludes 
our ideas and introduces our future work. 



 

II. PRIOR WORK 

Much researches has been done to study how effectively 
nitrate content in water can be predicted. Almasri et al. proposed 
the use of Modular Neural Networks (MNN) to predict the 
nitrate distribution in water [16]. The MNN-based approach was 
simple and economical. Although it could efficiently predict the 
distribution of nitrate concentration in water, its performance 
deteriorated drastically with noisy data due to high sensitiveness 
to errors in the input data. Yesilnacar et al. used Artificial Neural 
Networks (ANN) based approach to predict the nitrate 
concentration in 24 observation wells in the Harran Plain, 
located in Turkey [17]. The developed model was cost-effective 
and gave a satisfactory fit to the experimentally obtained nitrate 
data. Poor et al. proposed the use of tree analysis to improve the 
predictions of low-flow nitrate in Willamette River[18]. 
Although regression tree analysis greatly improved the 
predictability compared to multiple linear regression, the results 
show that this approach was highly inaccurate with smaller 
datasets and shows an inconsistent relationship between nitrate 
and some other parameters. Arabgol et al. proposed the use of 
Support Vector Machine (SVMs) Models in predicting the 
nitrate concentration in ground water resources [19]. SVM 
models were fast, reliable and cost-effective. The prediction 
accuracy of SVM was better than ANN. However, the prediction 
accuracy of SVM models with noisy data has not yet been 
proven. To acquire more accurate results, we proposed a 
numerical equation and tune the parameters with GA in this 
paper. 

The four objectives of our study are: 1) Use genetic 
algorithm to optimize the parameters of the nonlinear NO3 
prediction model 2) Evaluate the performance of GA with the 
results from LOADEST software. 3) Compare the performance 
of GA approach with four other machine learning techniques 
such as gradient boosted tree regression, random forest 
regression, decision tree regression and generalized linear 
regression. 4) Deal with missing fields in the dataset and 
evaluate how it affects the prediction capability of the model. 

Our results show that our GA-based approach produced 
nitrate level predictions that were closer to the observed values 
than LOADEST and statistically significantly (t-test, 
p=8.19*10-47) different from LOADEST predications. 
Furthermore, the GA tuned model performed better than the four 
other estimation methods described earlier. Therefore, using our 
proposed approach hydrologists can make more accurate 
predictions on nitrate content in water. 

III. METHODOLOGY 

We used a GA with rank based selection. Two-point 
crossover was used as the crossover technique, and bit-wise 
mutation was used as the mutation strategy. We also compared 
the performance of rank based selection strategy with other 
prominent selection techniques used in the genetic algorithm. 
The results of the comparison between different selection 
strategies are given in section IV. 

The proposed NO3 prediction model uses six constituents 
present in water to make predictions on the NO3 level. Organic 
nitrogen, orthophosphate, pH level, dissolved oxygen, 
temperature, and discharge are the six constituents required by 

the model. The model maintains a nonlinear quadratic 
relationship with the various constituents and contains 12 
parameters whose value lies in [-10.24,10.24]. The proposed 
model is represented as below: 

Ѱ =  a0 +  a1 ∗  Ln Q +  a2 ∗ (Ln Q)2 + a3
∗ sin(2π ∗ dtime) +  a4
∗ cos (2π ∗  dtime) +  a5 ∗ dtime +  a6
∗ dtime2 +  a7 ∗ DO +  a8 ∗ T +  a9 ∗ ON 
+  a10 ∗ OP +  a11 ∗ TP 

Where Q denotes discharge; DO denotes dissolved oxygen; 
T denotes temperature; ON denotes organic nitrogen; TP 
denotes pH level; OP denotes orthophosphate; dtime (decimal 
time - center of decimal time); ѱ denotes nitrate load at dtime. 
Decimal time (calculated as decimal years in LOADEST) is an 
important explanatory variable for load modeling. In the 
LOADEST model, the third and fourth terms represent a first-
order Fourier series in dtime to capture seasonal variations and 
the fifth and sixth terms in dtime  are meant to capture linear and 
quadratic temporal trends [3]. Decimal time is the decimal 
equivalent of the date and time. To convert the date and time to 
its decimal equivalent, one year is represented as one revolution 
around the unit circle. Therefore, the values within a year are 

converted to their respective values between 0 and 2. Center of 
decimal time is the average of all the decimal equivalents for the 
entire time period. 

The objective function in the genetic algorithm for the 
estimation of optimal parameters (a0 to a11) in the proposed 
nonlinear NO3 prediction model is taken as minimizing the mean 
square root of sum of squares between the observed and 
predicted nitrate content in water and is given by 

min RMSE = √
1

𝑛
 ∑ (𝑃𝑖 − 𝐴𝑖)

2𝑛
𝑖=1  

where Pi and Ai represent the predicted and observed values 
of nitrate content respectively and n is the total number of 
observations. In genetic algorithms, the fitness function often 
defined for the canonical GA. To meet this requirement, the 
fitness function is represented as the reciprocal of the objective 
function. Therefore, the RMSE values will be minimized on 
maximizing the fitness function. 

The string length of 11 was chosen to represent each variable 
and was encoded with the binary digits. This is because the value 
of each variable lies in [-10.24, 10.24] and the precision is 0.01, 
which means there are 211 possible numbers in total. Since there 
were 12 variables, from a0 to a11, the total chromosome length 
of the individual was 132. The population size was chosen as 
200 and the number of generations was fixed to 500. A mutation 
probability (Pm) of .01 and a crossover probability (Pc) of 0.9 
were used in the genetic algorithm to estimate the optimal values 
of the variables in the proposed nonlinear nitrate prediction 
model. After many experiments were done, we found these 
chosen GA parameters guarantee good results for this problem. 
The genetic algorithm was run for 30 times with different 
random seeds. The best (minimum) of the 30 runs was selected 
as the solution to the problem. 

There are some existing hydrological tools or libraries that 
can predict NO3 content in water based on the available 
constituent details. However, none of them can guarantee 



 

accurate predictions. To evaluate the performance of the model, 
several quality metrics were used. Root Mean Square 
Error(RMSE), Percent bias (PBIAS) and Nash-Sutcliffe 
efficiency (NSE) are some of the popular quantitative statistics 
used to perform the statistical evaluation of model accuracy.  
The statistical parameters are defined by the following: 

 

RMSE = √
1

𝑛
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2𝑛
𝑖=1  
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where Pi and Ai represent the predicted and observed values 
respectively. 

RMSE is a widely used error metric which indicates how 
close the predictions to the actual values [20]. Since RMSE is 
the difference between the actual observed values and the values 
predicted by the model, for an efficient model, the RMSE value 
should be lower.  

PBIAS is a performance metric which shows the behavior of 
the predictions made by the model. It indicates whether the 
predictions from the model overestimate or underestimate the 
actual observations. Positive PBIAS values denote 
overestimates, whereas negative values denote underestimates. 
For an effective model, PBIAS values should be close to zero.  

NSE is a commonly used criterion in hydrology to evaluate 
the quality of the predictions made by the model. NSE is a 
normalized statistic which determines the ability of the model to 
make predictions that fit 1:1 line with the observed values. NSE 
value ranges between -infinity and 1. The higher the NSE value, 
the more accurate the model. To consider a model with an 
acceptable level of performance, NSE values should be close to 
1. 

The dataset used in the study was collected from the United 
States Survey for Big Darby Creek Watershed in Ohio. The 
dataset comprised 435 water samples monitored during the 
period of 20 years between December 1, 1996 and August 25, 
2016. There were two challenges faced with this dataset. 1) 
cleaning the data and 2) filling the missing fields in the dataset. 
The dataset contains many constituent details which are not 
relevant for the proposed model. Finding the required 
constituents information and removal of unwanted constituent 
details from this USGS dataset was the first challenge. Out of 
the 435 water samples, only 140 samples had the measurements 
for all the constituents required by the model. For the remaining 
235 samples, at least one of the constituent readings were 
missing. Missing fields in dataset is a common issue with 
environment data and researchers have employed various 
strategies to deal with the problem. Artificial neural networks, 
support vector machines, interpolation or regression techniques, 

and Bayesian approaches, multiple imputations are few of them. 
However, for this experimental study, simple linear regression 
was used to fill the missing fields. Because when using a 
deterministic linear regression approach, if results go bad, it is 
easy to pinpoint where the issue lies, whether with the data or 
the GA approach. We did not only use the complete 140 samples 
because we want to test if linear regression technique is good 
enough for this problem and it is very common that there are 
some missing data in the real world environmental observations. 
These incomplete (with some missing data) samples are also 
very important to most studies. 

The proposed approach was compared with the results from 
LOADEST, which is a prominent load estimation tool used by 
hydrologists. On specifying the input constituents, LOADEST 
performs its own calibration and estimation procedures using 
several statistical estimation methods and forms a regression 
model to predict the estimated constituent. Besides LOADEST, 
the results of the genetic algorithm were compared with four 
other machine learning techniques: Generalized linear 
regression, gradient boosted tree regression, decision tree 
regression, and random forest regression. Linear regression is a 
popular modeling technique used to estimate values for an 
unknown parameter [21].  The data for the known variables 
(features) is used to map a linear relationship with the parameter 
to be estimated. Linear regression is not suited for problems 
which maintain a nonlinear relationship between predicted 
parameter and features. Generalized linear regression is more 
accurate than linear regression, as it allows transform predictors 
and interactions [22]. Decision tree regression uses decision tree 
as the predictive model and is widely used in data classification 
research [23]. It breaks down data into smaller datasets, by 
incrementally developing an associated decision tree. Random 
forest regression is similar to decision tree regression, where 
random forest regression uses multiple decision trees to improve 
the regression results [24]. Gradient boosted tree regression is 
another machine learning technique which follows a stage-wise 
fashion to build an additive prediction model using the 
combination of other predictive models [25]. It is a popular 
technique which is used by Google and Yahoo for page ranking 
in search engine. 

In the next section, we have done several experiments to 
compare the performances of the introduced six methods and 
analyze the results. 

IV. RESULTS AND ANALYSIS 

We used three performance measurements (RMSE, PBIAS, 
and NSE) to compare six approaches introduced. The six 
prediction methods are a generalized linear regression, gradient 
boosted tree regression, random forest regression, decision tree 
regression, GA, and LOADEST. LOADEST contains many 
methods and we chose the best results to compare with other 
methods. 

We tested these methods with 30-fold cross-validation and 
used 70% of the data for training and used 30% of the data for 
testing. Furthermore, the models have been run 30 times and the 
average values are used as the final result. Some interesting 
phenomena are found from these results. 



 

Table I displays our results from all six methods. From the 
table, it is clear that the random forest regression has the lowest 
RMSE, which means this regression method prediction is closer 
to the observed values. GA has the best PBIAS, which shows 
that GA does least overestimate or underestimate compared to 
other methods. The gradient boosted tree regression has the best 
NSE. This means the method is more efficient and its prediction 
fits 1:1 line with the observed values. The GA is not as good as 
other machine learning methods, but it is slightly better than 
LOADEST based on RMSE and much better based on PBIAS 
and NSE. However, this does not mean GA is less useful. The 
best result of the 30 GA model runs RMSE is only 1.896525565, 
which is better than most other methods. This means GA can 
obtain the good results but it is not very robust. 

Different selection strategies were tried to improve the 
execution of the genetic algorithm. We compared the 
performance of rank based selection with other popular selection 
strategies such as truncation selection, fitness proportionate 
selection, tournament selection and elitism. For truncation 
selection, the candidate individuals were sorted in the decreasing 
order of their fitness value, and the individuals were picked from 
the first half of the population to generate offspring. To perform 
tournament selection, a set of 40 individuals were randomly 
selected from the population and the individual with the best 
fitness was chosen. To implement elitism, the fittest 25 

individuals in the population were copied to the next generation 

and thus ensure that the best chromosomes are not being lost 
during the evolution process. Table II shows the results obtained 
with different selection strategies. Among the five selection 
strategies implemented, rank based selection performed the best, 
whereas truncation selection was the worst.  

     Different years have different characteristics. Some years are 
very dry (droughts) and some years are very wet (floods). Even 
though the year information is built in “dtime” in our fitness, the 
GA model performs different year by year. Figure 1 shows the 
best and worst results of year-wise comparison. This means that 
the year information is not well-built in the current fitness 
function. We have run the GA model with and without year 
information. The result shows that the year information can 
improve the results (with year RMSE is 2.035 and without year 
RMSE is 2.145). 

     To prove that GA method is significantly different from the 
LOADEST estimations, the one-tailed T-Test has been done and 
the p-value obtained was 8.19*10-47, which shows that the 
predictions of these two methods are significantly different. 
Also from Table III, it is clear that even though some methods, 
such as gradient boosted tree, have better RMSE and NSE, their 
T-Test values show that the predictions of these methods were 
not significantly different from GA predictions. Therefore, it is 
wrong to state that the performance of those techniques was 
superior to GA approach. Table IV contains more statistics 
results of the introduced methods. 

Some other fitness functions were also tried. However, most 
of them did not perform very well. For example, one of 
the fitness function is created with the assumptions that the 
nitrate has non-linear quadratic relations with all the parameters. 
The results show that this assumption cannot guarantee good 
results for all the occasions and most cases it can lead to a worse 
result than the previously introduced fitness functions. This 

 
 

Figure 1. Comparison of the best (year 1996) and worst 

(year 1997) results 

 

 

TABLE I.  RESULTS OF DIFFERENT TECHNIQUES 

 

Name of the method RMSE PBIAS NSE 

Generalized linear regression 2.02044227 2.3559 0.27549 

Gradient boosted tree regression 1.96091777 1.9744 0.72986 

Random forest regression 1.89409494 1.8084 0.58736 

Decision tree regression 1.95253682 2.2497 0.55093 

Genetic Algorithm 2.03574731 -0.8012 0. 3761 

LOADEST 2.89 59.958 -0.474 

 

TABLE II.  COMPARISON OF DIFFERENT SELECTION STRATEGIES 

 

Selection strategy RMSE (Average of 30 runs) 

Fitness proportionate selection 2.077242 

Truncation selection 2.925081 

Tournament selection 2.190722 

Rank based selection 2.035747 

Elitism 2.100074 

 



 

experiment shows that professional knowledge of the target 
problem is very necessary to build a good fitness function. 

 

 

 For all the experiments mentioned above, we used the 
original observed dataset from USGS and filled the missing data 
gaps using linear regression. To test the accuracy of data filling 

technique, we ran the models with the original dataset and also 
with the modified dataset filled with linear regression values. 
Figure 2 shows the comparison of the results between the 

original dataset and the modified dataset. From Figure 2, it is 
evident that the performance of GA deteriorated with the filled 
data values. Thus, we could conclude that linear regression is 
not a reliable technique for filling missing data fields in 
environmental datasets and could be replaced with other 
efficient data filling techniques.  

Figure 3 compares the LOADEST predications, GA 
predictions, and the observed data. Only two methods results are 
shown in the graph because it is clearer than crowding all the 
results in a single graph. From the comparisons, we can tell that 
GA predictions are closer to the observed than the LOADEST 
predications. However, GA method generates some predictions 
below zero and NO3 values cannot be negative. In the future, we 
plan to set some extra rules to make predications more accurate, 
such as turn negative value into zero to make the results more 
accurate. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a GA method to calibrate 
the parameters of an improved nonlinear hydrological nitration 
prediction model. From RMSE, PBIAS, and NSE, the GA 
method is better than LOADEST. GA predictions are 
significantly different from the LOADEST predictions based on 
T-test p-value (<0.001). We have also used some other popular 
machine learning techniques (generalized linear regression, 
gradient boosted tree regression, random forest regression, and 
decision tree regression) to predict nitrate content with the same 
dataset. The results show GA has the best PBIAS value than 
other methods. This means GA does least overestimates and 
underestimate compared with other six introduced methods. 

 
 

Figure 2. Comparison of the results using original and 

filled data 

 

TABLE V.         PARAMETER ESTIMATES OF BIG DARBY CREEK 

WATERSHED USGS DATASET 

 

Parameter Genetic Algorithm LOADEST 

a0 1.26 2.6248 

a1 -6.06 0.2632 

a2 3.15 -0.0030 

a3 0.72 0.6947 

a4 0.43 0.3325 

a5 -0.17 -0.0359 

a6 2.95 0.0039 

a7 -0.02 -0.1511 

a8 0 -0.1002 

a9 1.28 -0.0344 

a10 6.61 5.3633 

a11 -5.55 -1.7135 

 

TABLE III.  RESULTS OF T-TEST 

Methods Names P-value T-value 

GA vs LOADEST 8.19*10-47 1.648 

GA vs random forest 0.026 1.648 

GA vs generalized linear regression 0.102 1.648 

GA vs decision tree 0.274 1.648 

GA vs gradient booted tree 0.486 1.648 

 

TABLE IV.  MEANS AND VARIANCE 

Methods Names Mean Variance 

GA 2.458 4.250 

LOADEST 4.082 11.585 

random forest 2.621 2.492 

generalized linear regression 2.545 1.279 

decision tree 2.515 3.536 

gradient booted tree 2.461 4.317 

 



 

GA’s best results are as good as random forest regression 
predications based on RMSE. 

For the nitrate model parameter calibrations, GA is not 
perfect. From the experiments, it is clear that the year 
information is not well-built in the model. In the future, we plan 
to modify our fitness function to improve the “dtime”. Also, 
based on the results in the Result Section, it is clear that the data 
filling using linear regression can make the predictions less 
accurate. This means the linear regression method is not very 
good for this problem. We planned to replace it with other 
methods, such as neural networks and compare the performance. 
Last but not least, we want to add some extra limitations or 
customize some conditions to obtain better results. For example, 
the predictions cannot be negative. 
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