
Software Infrastructure to Reduce the Cost and Time of Building
Enterprise Software Applications: Practices and Case Studies

Jalal Kiswani* Muhanna Muhanna** Sergiu M. Dascalu* Frederick C. Harris, Jr.*

*Department of Computer Science and Engineering,
University of Nevada, Reno
Reno, NV, 89503, USA

jalal@nevada.unr.edu dascalus@cse.unr.edu fred.harris@cse.unr.edu

**Department of Computer Graphics, Princess Sumaya University for Technology
Amman, Jordan

m.muhanna@psut.edu.jo

Abstract

In traditional software projects development, there
were mandatory activities that should be carried
out during the software development life cycle
(SDLC). These activities were time-consuming and
expensive. They were either performed manually
or in basic approaches by different roles. Some
of these activities include: version control, project
structuring, development environment preparation,
software testing, building, packaging, deployment,
and management of dependencies including third
party libraries and application programming interfaces
(APIs). This paper discusses the rationale behind
the importance of these activities, and how their
automation can reduce the time and cost of software
projects, as well as increasing its quality. This
paper also consists of some of available open-source
resources, and mature free software tools that are
already implemented in the software industry of Java
technology. Moreover, the paper discusses current
limitations of these tools, and includes three case
studies of a government and an academic organization,
as well as a software development house, at which
these recommendations have been implemented.

keywords: enterprise information system applications
infrastructure.

1 Introduction

In the software development industry, time is a
very important factor for any project’s overall suc-
cess. Reducing the life-cycle time while maintaining

or gaining better quality are always significant goals
for stakeholders and project’s clients[1]. Preparing
the proper infrastructure for software projects will
support the technical team by avoiding consuming their
time on repetitive technical tasks, making them more
productive; Such infrastructure can be hardware or
software[2].

This paper covers the software infrastructure part,
which allows developers to reduce the time spent in
technical activities and tasks that are not directly
related to the software development, and focus on
activities that are more important for the project. This
can be achieved by using already developed mature and
tested tools, and processes to manage resources and
automate many tasks during the SDLC.

Tools and processes discussed in this paper include:
(i) version control (ii) artifacts and dependencies man-
agement (iii) standard project structure (iv) test au-
tomation and (v) continuous delivery and continuous
integration, which consists of building, packaging and
deployment automation. Although test automation is
part of continuous delivery, the authors preferred to
discuss it in a separate section.

In any software project, there are assets that should
be managed, maintained and tracked [3]; such as
documentation, diagrams, and most importantly, the
source-code, along with the software packages builds
and releases. This process of managing and maintaining
these assets is known as Software Version Control
(SVC), which is part of the Software Configuration
Management (SCM) disciplinary[4].

SVC is not a luxury in the software development
industry anymore. The unavailability of SVC may
cause a negative impact on the business affecting the
software projects overall success [5]. SVC provides

978-1-943436-09-5 / copyright ISCA, SEDE 2017
October 2-4, 2017, San Diego, California, USA

many features, which include the ability to provide an
effective way of assets and resources sharing, deletion
recovery, conflicts resolving, logical copying (for tagging
and branching purposes), among many others.

On the other hand, and based on the “Do not reinvent
the wheel” concept, the use of 3rd party libraries and
APIs has become an important factor to reduce the
cost. However, managing these libraries and their
versions had become a serious challenge, which led to
introducing the concept of dependency management [6].

In some programming languages and technologies,
such as Microsoft .NET platform, creating new projects
has never been an issue, since Visual Studio - the
official Integrated Development Environment (IDE) of
Microsoft - has been the only available option for
developing projects in .NET and any other Microsoft
technologies. This, however, is not the case in open-
source community, with a long list of IDE options for
software development, especially for Java technology(
e.g. Eclipse, NetBeans, IntelliJ, JDeveloper, etc.).
This has become a challenge in terms of projects
migration between different IDEs. This challenge
can effects either project stability negatively by using
different IDEs, or decreases the developer productivity
by enforcing unified IDE based on the companys policy.

In traditional software projects and in SDLC, testing
is the phase that ensures the quality of software.
Testing can be performed manually, by either execut-
ing written test-scenarios directly(most likely by the
quality assurance or quality control officers), or based
on the knowledge of the Business Analyst (B.A.) or
domain-expert where they start executing ad-hock test-
cases based on their experience and previous knowledge.
These manual approaches, however, are not practical
in large and long-term projects, because it is time
consuming and costly. Test automation is the answer
to the above issues, where test cases can be written and
implemented as program units using hard-coded values,
which validate the functionality against the require-
ments in a more granular approach. The advantages
of test automation over manual testing are that it is
only one time investment, and an incremental process.
Test automation may run in agile methodology as task
testing based, or as a part of a full integrated test for
the whole module or system, or both. Although test
automation makes the testing phase of software projects
more cost effective on the long run, it requires relatively
more investment in the short term, since writing and
maintaining test cases are most likely performed by
test automation developers or technical leaders, which
is considered an extra overhead on the project’s cost[5].

After finalizing the software development phase, soft-
ware packages should be prepared, deployed and in-
stalled, either for testing or final operation. The pack-

aging, deployment, and installation may be performed
in different approaches. It may be done manually -
by collecting all the required resources, using script
tools (e.g. Apache Ant)- or using proprietary features
in IDEs [7]. These methods have the limitations of
an expert’s availability specific field, along with non-
portability between tools, IDEs and environments.

In the software industry and open-source community,
tools and frameworks have been developed to automate
many activities and tasks required by the development
of software’s projects, such as: Maven[8], Subversion[9],
JUnit[10], and Jenkins[11], discussed in this paper.

This paper is organized into 5 sections. This section
covers the introduction, then it is followed by Section 2,
which covers the recommended software infrastructure,
as well as the background of every activity embedded in
the sub-sections; Sections 3 discusses the provided case
studies to validate this work; Section 4 discusses the
related work of this research; Section 5 concludes the
paper and identifies some directions of future work.

2 Recommended software
Infrastructure

This section presents the recommended components
and tools required as software infrastructure for build-
ing high quality software applications, as shown in
Figure 1.

Figure 1: Software infrastructure for software projects

2.1 Version Control

Version control (VC) is the management of soft-
ware projects assets in general and the source code
in particular [4]. It is a combination of tools and
techniques that have been used since 1970, to keep
track of software assets and its versions, to ensure
that it is managed in a reliable and an efficient way.

Most SVC systems consist of multiple commands and
functionalities enabling software developers and any
other party involved in the managed projects to interact
with these assets. Most likely, these assets are stored
in a special database called repository. SVC includes
features to create, view, update, and delete assets, with
ability to compare, retrieve and merge different versions
of same asset.

There are two classifications of VC tools and soft-
ware: Centralized (CVC) and Decentralized (DCVC);
currently, two popular open-source tool for CVC is
Subversion, and for DCVC is Git.

As mentioned in previous sections, SVC nowadays is
important in the software development process. How-
ever, deciding between CVC or DCVC in the industry
is challenging , because it depends on many factors,
include: project scale, team geographical location, team
expertise and agility[12].

As shown in Table 1, small-scale projects with rela-
tively close geographical areas and low-level expertise,
CVC is a preferred way since it is easier to manage
and will reduce the chance of conflicts. However,
CVC requires a centralized seniority expert to ensure
stability through continuous code review process [12].
In addition, the software development policy in this
case should ensure that only low-level and short-term
tasks are assigned to developer team by an experienced
architect or software designer [13].

Table 1: Factors affecting choosing CVS or DCVC
Centralized

Version
Control
(CVS)

Decentralized
Version Con-
trol(DCVC)

Team
location and
distribution

Local Remote

Project size Small large

Team
expertise

Low-medium Medium-high

Task duration Short Medium-long

Task nature
Low-medium

level
Medium to
high level

Architecture
and design
decisions

Architect
/supervisor

developers

Expert
supervisor

Highly
recommended

Recommended

DCVC, on the other hand, depends on the situation
where developers have higher maturity and expertise
to handle more high-level and long term tasks [13] and
the ability to take architectural and design decisions.
Moreover, technical management should ensure the

standardization of coding , naming convention, design
and architecture decisions, which will result in project’s
consistency. Failing to do so, in turn, may increase the
cost of development and maintenance[14].

2.2 Artifacts and Dependency
Management

Another technique and activity that most software
developers use is the utilization of dependencies (ar-
tifacts) such as third party libraries and APIs to
reduce the development time and achieve better quality.
Increasing the number of these dependencies may cause
a maintainability and stability issue for projects during
the SDLC if not managed correctly. Developers and
software engineering practitioners have tried to over-
come this issue manually using different approaches,
such as putting all the artifacts in a separate folder and
configuring the integrated development environment
(IDE) to use that folder for sharing these libraries with
other developers. Sometimes, they upload this folder
to a version control system. However, these manual
approaches created other issues, such as dependency
version consistency, also, it didnt solve the problem
of finding these dependencies on the internet for new
projects in the long run.

As a solution for the above problems, the concept of
artifact repository has become popular, where a special
system such as Nexus is used as a repository manager
to manage the dependency in an organized and effective
way. It is currently the system used for managing
Maven central repository, one of the largest software’s
packages repository on the internet.

Figure 2: Maven Repository indexed artifacts

The usage of 3rd party libraries, APIs and frame-
works in software projects (artifacts) has become a
key part of increasing the productivity of developers

to deliver software projects successfully and on time
[15]. However, manual maintenance of these artifacts is
a time consuming and sensitive task, specially when
considering version’s difference of software projects
on development, testing or production environments.
Currently, there are many open-source tools that can
be used to cover this need such as Nexus. Nexus is
used in Apache Maven -the largest open-source central-
repository- with more than 6.66M artifacts available
as shown in Figure 2 on mvnrepository.com on June
2017. Repository management tools are helpful tools,
especially with the availability of public repositories
such as Maven central repositories; however, in many
cases, there are special needs and requirements that are
not available in public repositories, such as: absence
of required dependencies, either because of the oldness
,privacy, or licensing issues. Also, sometimes required
dependencies may be available in different repositories
other than the central one, which causes the project to
be manually configured to point to these repositories.

As shown in Figure 3, the proposed recommendation
is to implement a software repository manager such as
Nexus on the company/organization level; this instance
will act as a proxy for Maven central repository and
3rd party repositories, also it can be used to upload
3rd party dependencies, or company internal packages
and builds, utilizing the security and privacy features
available in these software systems.

Figure 3: Recommended repository manager configura-
tion

2.3 Software Project Structure

Building software project’s structure has become an
important task as well. It should be performed carefully
to ensure compatibility and migration between different
IDEs. One of the mature options for project structure
standardization and organization is Apache Maven [16].
Maven has been designed and built based on the
concept of project object model, where all the technical
aspects of the project are integrated in specific config-
uration files, enabling portable IDE integration along
with built-in packaging and dependency management
and lookup [17].

2.4 Test Automation

To increase the quality of software, test driven de-
velopment approaches have been used for a while, au-
tomating unit and integration tests processes. Apache
JUnit is open-source tool which is wildly used in
different levels of projects. The cost of writing test
case, however, is relatively high, especially with mid to
large sized projects[18]. Dynamic approach of creating
test cases has become mandatory in order to increase
productivity and quality, as well as in reducing the cost.

2.5 Continuous Delivery and
Integration

The process of building final packages of software
applications includes many steps. It starts by collecting
the required version of application’s source code from
the VC, followed by its compiling and packaging ,
and applying the automated test cases ensuring soft-
ware’s integrity. All these actions and processes form
the Continuous Integration (CI) [3]. After package
is prepared, it may be published to a dependency
repository manager, directly deployed in the designated
environment, or both. The full process including the CI
is called Continuous Delivery (CD). CD aims to ensure
that a high-quality and consistent software package
is deployed and implemented. However, it will not
be an easy task without a tool that automates all of
the above processes [19]. Jenkins is an open-source
tool for CI and CD [20]. It is relatively easy to
configure and have a big set of plugins required to
integrate with many other tools (e.g. SVN, Git, Maven,
etc.). Furthermore, It can be deploy applications to
production or test environment using different types of
plugins [20], such as deployment to JBoss application
server using command line interface (CLI) triggered
after successfully built process.

3 Case studies

The recommendations and best practices described
in this paper have guided the following case studies
from different domains with different scalability levels.
These case studies include governmental organizations
such as Jordan Customs[21], academic such as Univer-
sity of Jordan [22], enterprise software vendors such
as International Turnkey Solutions[23]. All of these
organizations have implemented most of these recom-
mendations to increase the quality of their systems and
the productivity of their developers. In the following
subsections, we will briefly describe these case studies.

3.1 Jordan Customs

Jordan Customs (JC) is a governmental organization
which is a division of the Ministry of Finance in
the Hashemite Kingdom of Jordan (Jordan). JC has
a relatively large software development department
with more than 30 developers. They have devel-
oped, enhanced and supported more than a hundred
applications automating their internal and external
processes. Part of these applications are a suite
that run under the umbrella of the Jordan Customs
Financial System (JCFS) which consists of more than
40 modules. JCFS has been developed with a team of
12 software developers from Jordan Customs under the
supervision of a software architect and an IT expert,
who has been funded by the United States Agency
for International Development (USAID)[24]. JC has
implemented the recommendations mentioned in this
paper including implementing Subversion, Nexus, and
Maven. However, due to the lack of time, they were not
able to automate the test cases as a part of CI.

3.2 University of Jordan

University of Jordan (JU) is the largest and most
popular university in Jordan with more than 40,000
students. As any large academic institute, JU has a
large I.T. department with many projects developed
in-house. One of these applications is the student self-
service mobile applications (JU-App.). JU-App has
been developed as part of an agreement and cooperation
with a software development vendor specialized in
the automation of academic institutes in the Middle-
East region called Solid-Soft[25]. JU-app consists of
back-end components built on Java and front end-
components built on Android and iOS platforms. Same
as JC, the development team of the JU-App imple-
mented all the proposed recommendations in this paper
except the unit-test automation.

3.3 International Turnkey Solutions

International Turnkey Solutions (ITS) is one of the
software vendors for the banking industry with more
than 360 banks world-wide on their clients list. One
of ITS products is ETHIX-Net, which is a web-based
online and mobile banking platforms for both retail and
corporate customers. ETHIX-Net previous version has
been developed in 2003 with J2EE technology to benefit
from the enterprise level features of Java Enterprise
Edition, and the portability of Java platform. In
2014, ITS has decided to revamp ETHIX-Net to be
based on the latest standards and technologies in the
Java ecosystem. For that purpose they out-sourced
and hired an expert solution architect to architect,

design and lead the development the new platform
and system based on the best practices just from the
beginning. Based on the long experience of ITS in the
software development field and the recommendations
of the architect, they implemented the infrastructure
preparation list mentioned in this paper, and since they
have the availability of a large test automation team,
they have been able to implement the test automation
mainly for the back-end components.

4 Related Work

To the best of the authors knowledge, no complete
reference was found to cover a description or a rec-
ommendation for a complete solution to the software
infrastructure required for building enterprise software
systems. However, there are many publications that
cover some individual parts of the proposed and rec-
ommended solutions discussed in this paper. These
publications were a valuable resources for writing this
paper.

For version control, it is relatively not a new topic, as
it has been there just from the beginning. In 2009 De
Alwis, discussed the main differences between CVS and
DVC, he proposed some factors that can be used to de-
cide which to use, including team geographical location
and hardware infrastructure such as firewalls[13].

In 2014, Mulu explained the motivations and barriers
to move from CVC to DSVC [14]. In 2012, Raemaekers
and his colleagues discussed the importance of using
3rd party libraries and APIs, and how it can reduce the
development time and cost[26].

The closest research to the work presented in this
paper, is the work conducted in the paper “Agile De-
velopment and Dependency Management for Industrial
Control Systems [15] where authors covered the usage
of Apache Maven for build automation, Hudson for
continuous integration and Nexus for what they called
definite media libraries.

5 Conclusion

This paper presented a recommended software infras-
tructure for building high-quality enterprise software
systems and reducing the lifecycle time and cost. This
infrastructure automates many required tasks and tech-
nical activities which are not directly related to software
project’s development. These activities include version
control, standard project structure, test automation
and continuous delivery. Continuous delivery includes
continuous integration and deployment automation,
where continuous integration also includes package
building and test automation.

Every topic has been presented in details, and the
proposed recommendations have been explained with
the rational behind them, including a proposed open-
source free tools for every activity.

Case studies for many domains including government,
education and software development have been pre-
sented and discussed as well.

However, during analyzing these case studies, test au-
tomation was the missing part, either fully or partially,
since technical and development teams thought that it
requires a much effort and time, which opens the door
for future work and raise the question of: is there an
approach of making the development of test automation
more efficient and accepted by software developers?

Also, all of the proposed tools and solutions in this
paper are Java technology based, so the standardization
of the concepts provided by these tools to be utilized
with other technologies for different scopes, will benefit
both the academia and industry.

Acknowledgment

This material is based upon work supported by the
National Science Foundation under grant number
IIA-1301726. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References

[1] Kurt R Linberg. Software developer perceptions
about software project failure: a case study. Journal
of Systems and Software, 49(2):177–192, 1999.

[2] Paul L Bannerman. Risk and risk management in
software projects: A reassessment. Journal of Systems
and Software, 81(12):2118–2133, 2008.

[3] Paul M Duvall, Steve Matyas, and Andrew Glover.
Continuous integration: improving software quality
and reducing risk. Pearson Education, 2007.

[4] Ben Collins-Sussman, Brian Fitzpatrick, and Michael
Pilato. Version control with subversion. ” O’Reilly
Media, Inc.”, 2004.

[5] Peter Lindsay, Yaowei Liu, and Owen Traynor. A
generic model for fine grained configuration
management including version control and
traceability. In Software Engineering Conference,
1997. Proceedings., Australian, pages 27–36. IEEE,
1997.

[6] Yi Cui and Klara Nahrstedt. Qos-aware dependency
management for component-based systems. In High
Performance Distributed Computing, 2001.
Proceedings. 10th IEEE International Symposium on,
pages 127–138. IEEE, 2001.

[7] Alan Dearle. Software deployment, past, present and
future. In 2007 Future of Software Engineering, pages
269–284. IEEE Computer Society, 2007.

[8] Apache Maven. http://maven.apache.org.

[9] Apache Subversion. http://subversion.apache.org.

[10] Junit. http://junit.org.

[11] Jenkins. http://jenkins.io.

[12] Brian De Alwis and Jonathan Sillito. Why are
software projects moving from centralized to
decentralized version control systems? In Proceedings
of the 2009 ICSE Workshop on cooperative and
human aspects on software engineering, pages 36–39.
IEEE Computer Society, 2009.

[13] Bryan O’Sullivan. Making sense of revision-control
systems. Communications of the ACM, 52(9):56–62,
2009.

[14] Kıvanç Muşlu, Christian Bird, Nachiappan Nagappan,
and Jacek Czerwonka. Transition from centralized to
decentralized version control systems: A case study on
reasons, barriers, and outcomes. In Proceedings of the
36th international conference on software engineering,
pages 334–344. ACM, 2014.

[15] M Mettala. Agile development and dependency
management for industrial control systems. In Conf.
Proc., volume 111010, page WEPKS001, 2011.

[16] Luisa Hernández and Heitor Costa. Identifying
similarity of software in apache ecosystem–an
exploratory study. In Information Technology-New
Generations (ITNG), 2015 12th International
Conference on, pages 397–402. IEEE, 2015.

[17] Tim O’Brien and Mountain View Sonatype Inc.
Maven: the definitive guide. O’Reilly, 2008.

[18] Hyunsook Do, Gregg Rothermel, and Alex Kinneer.
Prioritizing junit test cases: An empirical assessment
and cost-benefits analysis. Empirical Software
Engineering, 11(1):33–70, 2006.

[19] Mitesh Soni. End to end automation on cloud with
build pipeline: the case for devops in insurance
industry, continuous integration, continuous testing,
and continuous delivery. In Cloud Computing in
Emerging Markets (CCEM), 2015 IEEE International
Conference on, pages 85–89. IEEE, 2015.

[20] Valentina Armenise. Continuous delivery with
jenkins: Jenkins solutions to implement continuous
delivery. In Release Engineering (RELENG), 2015
IEEE/ACM 3rd International Workshop on, pages
24–27. IEEE, 2015.

[21] Jordan Customs. http://customs.gov.jo.

[22] University of Jordan. http://ju.edu.jo.

[23] International Turnkey Solutions. http://www.its.ws.

[24] Usaid Jordan-Fiscal-Reform project.
http://pdf.usaid.gov/pdf_docs/PA00J9GD.pdf.

[25] Solid Soft. http://www.solid-soft.net.

[26] Steven Raemaekers, Arie van Deursen, and Joost
Visser. An analysis of dependence on third-party
libraries in open source and proprietary systems. In
Sixth International Workshop on Software Quality and
Maintainability, SQM, volume 12, pages 64–67, 2012.

