History of Computers

My Background

- Stanford University: Ph.D. & M.S.. 1998, 2005 (Electrical & Computer Engineering)
- Harvey Mudd College: Assistant/Associate Professor (2004-2014)
- UNLV: Associate Professor (2014 present)
- Industry experience: Hewlett-Packard, Nvidia, Intel, Sierra Wireless, Southwest Research Institute, Qualcomm, etc.

Introduction

- Computers have revolutionized our world.
 - Smart phones, internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$335 billion in 2016.

Department of
ELECTRICAL & COMPUTER
ENGINEERING

History of Computers

The First Digital Computer

- Designed by Charles Babbage, British mathematician, inventor
- He worked on it from 1834 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Department *of* ELECTRICAL & COMPUTER ENGINEERING

The First Computer Program

- Ada Lovelace wrote the first computer program.
- Her program calculated the Bernoulli numbers on Charles Babbage's Analytical Engine.
- She was the daughter of the poet Lord Byron.

Boolean Algebra – George Boole

Department of

ELECTRICAL & COMPUTER

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables (1's, 0's)
- Introduced the three fundamental logic operations: AND, OR, and NOT

Analytical Engine

5/15/2017 7

1850

Vacuum Tube

- Invented by John Fleming, a British electrical engineer and physicist
- Basic component of electronics in first half of 20th century

Vacuum Tube-Based Computers

- **Z3 computer**, invented by Konrad Zuse in 1941
- **ABC** (Atanasoff-Berry Computer), 1942
- ENIAC, 1946 weighed 30 tons and had 18,000 vacuum tubes

Department of

ECTRICAL & COMPUTER

- John Bardeen, Walter Brattain, and William Shockley invent the transistor at **Bell Labs**
- The first transistor was huge about the size of the palm of your hand
- Now you can fit billions of transistors in the palm of your hand

• 3-terminal voltage-controlled device

• 3-terminal voltage-controlled device

• 3-terminal voltage-controlled device

Example:

Department of **ELECTRICAL & COMPUTER** ENGINEERING

drain

n

Supercomputers

- High-performance computers
- Expensive
- Examples:
- Cray-1 built in 1975
 - Cost: \$8 million
 - Performance:160 MFLOPS (millions of floating point operations per second)
- Cray-2 (1985)
 - Cost: \$32 million
 - Performance: 9 GFLOPS

Department *of* ELECTRICAL & COMPUTER ENGINEERING

Personal Computers (PCs)

- Low-cost, low-performance
- IBM PC (1981)
 - Cost: \$1,500 (~ \$3,600 in current USD)
 - 5 MHz clock
 - 1 MIPS (million instructions per second)
- Mac (1984)
 - Cost: \$2,500 (~\$5,000 in current USD)
 - 7.8 MHz clock
 - 128 KB RAM

Department *of* ELECTRICAL & COMPUTER ENGINEERING

5/15/2017 15

Modern Computers

- Microcontrollers (in dishwashers, toasters, etc.)
- Internet of Things (IoT)

Big Question

- Used to be: How to we get more capability (i.e., more transistors)?
- Now: How do we use all of these transistors?

Moore's Law

The number of transistors **doubles** every year (now every two years)

Gordon Moore, co-founded Intel in 1968 with Robert Noyce

Research Topics

- Hardware-accelerating algorithms
 - Examples: DSPs, GPUs
- Efficiently **coding algorithms** to take advantage of underlying hardware
- Interdisciplinary research
 - Robotics, prosthetics
 - Informatics: managing large amounts of data, prediction, large computations (e.g., human genome)
 - Machine learning

Research Topics

- Hardware-accelerating algorithms
 - Examples: DSPs, GPUs
- Efficiently **coding algorithms** to take advantage of underlying hardware
- Interdisciplinary research
 - Robotics, prosthetics
 - Informatics: managing large amounts of data, prediction, large computations (e.g., human genome)

Department of

AL & COMPUTER

• Machine learning

• **Challenge:** passive prosthetics are inefficient and can cause further dysfunction.

 Solution: active prosthetics mimic heel-toe push off, enabling more natural function and less compensation

BionX BiOM

SpringActive's Odyssey

Department *of* ELECTRICAL & COMPUTER ENGINEERING

SpringActive's Odyssey prosthetic ankle

https://www.youtube.com/watch?v=ncVi9El1pnE&feature=youtu.be

Dr. Sarah Harris

Department *of* ELECTRICAL & COMPUTER ENGINEERING

- Control algorithm: works pretty well, but must be manually adjusted / tuned.
- Humans use **feedback** (e.g., speed, force, terrain, etc.) to adjust.
- **Research objective:** instrument prosthetic leg with sensors to mimic real-time feedback of biological systems. Implement bio-inspired control algorithm.

- **Objective:** Implement bio-inspired control algorithm.
 - Instrument prosthesis
 - Modify software to adjust velocity and force

History of Computers

Where do we go from here?

History of Computers

Where do we go from here?

... Many possibilities

Questions?

Where do we go from here?

...Many possibilities

